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The data is an array of type fftw_complex, which is by default a double[2] composed of
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multiple/strided transforms into a single FFTW plan, transform a subset of a larger multi-
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fftw_complex is twice the size of double, the output array is slightly bigger than the input



Chapter 2: Tutorial 9

2.5 More DFTs of Real Data

FFTW supports several other transform types via a unified r2r (real-to-real) interface, so



10 FFTW 3.1.1

2.5.1 The Halfcomplex-format DFT

An r2r kind of FFTW_R2HC (r2hc
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Because of the discrete sampling, one has an additional choice: is the data even/odd around
a sampling point, or around the point halfway between two samples? The latter corresponds
to shifting the samples by half an interval, and gives rise to several transform variants
denoted by REDFTab and RODFTab: a and b are 0 or 1, and indicate whether the input
(a) and/or output (b) are shifted by half a sample (1 means it is shifted). These are also
known as types I-IV of the DCT and DST, and all four types are supported by FFTW’s
r2r interface.
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3 Other Important Topics

3.1 Data Alignment

In order to get the best performance from FFTW, one needs to be somewhat aware of two
problems related to data alignment on x86 (Pentia) architectures: alignment of allocated
arrays (for use with SIMD acceleration), and alignment of the stack.

3.1.1 SIMD alignment and fftw malloc

SIMD, which stands for “Single Instruction Multiple Data,” is a set of special operations
supported by some processors to perform a single operation on several numbers (usually
2 or 4) simultaneously. SIMD floating-point instructions are available on several popular
CPUs: SSE/SSE2 (single/double precision) on Pentium III/IV and higher, 3DNow! (single
precision) on the AMD K7 and higher, and AltiVec (single precision) on the PowerPC G4
and higher. FFTW can be compiled to support the SIMD instructions on any of these
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int i,j;
fftw_complex ***a_bad_array; /*

http://www.eskimo.com/~scs/C-faq/s6.html
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4 FFTW Reference

http://anubis.dkuug.dk/JTC1/SC22/WG21/docs/papers/2002/1388.pdf
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•





24 FFTW 3.1.1

Once you have created a plan for a certain transform type and parameters, then creating
another plan of the same type and parameters, but for different arrays, is fast and shares
constant data with the first plan (if it still exists).

The planner returns NULL if the plan cannot be created. A non-NULL plan is always returned
by the basic interface unless you are using a customized FFTW configuration supporting a
restricted set of transforms.

Arguments

• rank is the dimensionality of the transform (it should be the size of the array *n
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Planning-rigor flags

• FFTW_ESTIMATE specifies that, instead of actual measurements of different algorithms,
a simple heuristic is used to pick a (probably sub-optimal) plan quickly. With this flag,
the input/output arrays are not overwritten during planning.

• FFTW_MEASURE tells FFTW to find an optimized plan by actually computing several
FFTs and measuring their execution time. Depending on your machine, this can take
some time (often a few seconds). FFTW_MEASURE is the default planning option.

• FFTW_PATIENT is like FFTW_MEASURE, but considers a wider range of algorithms and
often produces a “more optimal” plan (especially for large transforms), but at the
expense of several times longer planning time (especially for large transforms).

• FFTW_EXHAUSTIVE is like FFTW_PATIENT
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they must be allocated.) For an in-place transform, it is important to remember that
the real array will require padding, described in Section 4.3.4 [Real-data DFT Array
Format], page 27.

• flags is a bitwise OR (‘|
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For an out-of-place transform, the real data is simply an array with physical dimensions
n1 × n2 × n3 × · · · × nd
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means of a slow, general-purpose algorithm (which nevertheless retains O(n log n
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• FFTW_REDFT11 computes an REDFT11 transform, i.e. a DCT-IV. (Logical N=2*n,
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int is;
int os;
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double *in, double *ro, double *io);

void fftw_execute_dft_c2r(
const fftw_plan p,
fftw_complex *in, double *out);

void fftw_execute_split_dft_c2r(
const fftw_plan p,
double *ri, double *ii, double *out);

void fftw_execute_r2r(
const fftw_plan p,
double *in, double *out);

These execute the plan
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fftw_export_wisdom_to_string returns a pointer to a NULL-terminated string holding the
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4.7.2 The 1d Real-data DFT
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REDFT00 (DCT-I)

An REDFT00 transform (type-I DCT) in FFTW is defined by:

Y
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Inverses and Normalization
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The basic problem is that is difficult to (portably) pass files and strings between Fortran
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the generic fftw function to execute the transform with multiplicity (howmany) and stride
parameters, you would now use the advanced interface fftw_plan_many_dft to specify
those parameters. The plans are now executed with fftw_execute(plan), which takes all
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the new routine is called fftw_init_threads and returns zero on failure. See Section 5.1
[Multi-threaded FFTW], page 45.



http://www.fftw.org
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K7 and others), or AltiVec (PowerPC G4+). SSE, 3dNow!, and AltiVec only work with
--enable-float (above), while SSE2 only works in double precision (the default). The
resulting code will still work on earlier CPUs lacking the SIMD extensions (SIMD is
automatically disabled, although the FFTW library is still larger).
− These options, with the exception of --enable-k7 (which uses assembly), require

a compiler supporting SIMD extensions, and compiler support is still a bit flaky:
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mailto:fftw@fftw.org
http://pauillac.inria.fr/ocaml/


Chapter 8: Installation and Customization 61

rdft/codelets/r2r/Makefile.am. After you modify any Makefile.am

mailto:fftw@fftw.org
http://www.fftw.org
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