

This manual is for FFTW (version 3.1.1, 4 March 2006).

Copyright c© 2003 Matteo Frigo.

Copyright c© 2003 Massachusetts Institute of Technology.

Permission is granted to make and distribute verbatim copies of this manual
provided the copyright notice and this permission notice are preserved on all
copies.

Permission is granted to copy and distribute modified versions of this manual
under the conditions for verbatim copying, provided that the entire resulting

i

Table of Contents

1 Introduction .

ii FFTW 3.1.1

4.5 Guru Interface . 32
4.5.1 Interleaved and split arrays . 32
4.5.2 Guru vector and transform sizes .

iv FFTW 3.1.1

http://www.fftw.org

2

http://www.fftw.org

4 FFTW 3.1.1

The data is an array of type fftw_complex, which is by default a double[2] composed of

6 FFTW 3.1.1

multiple/strided transforms into a single FFTW plan, transform a subset of a larger multi-

Chapter 2: Tutorial 7

8 FFTW 3.1.1

fftw_complex is twice the size of double, the output array is slightly bigger than the input

Chapter 2: Tutorial 9

2.5 More DFTs of Real Data

FFTW supports several other transform types via a unified r2r (real-to-real) interface, so

10 FFTW 3.1.1

2.5.1 The Halfcomplex-format DFT

An r2r kind of FFTW_R2HC (r2hc

Chapter 2: Tutorial 11

Because of the discrete sampling, one has an additional choice: is the data even/odd around
a sampling point, or around the point halfway between two samples? The latter corresponds
to shifting the samples by half an interval, and gives rise to several transform variants
denoted by REDFTab and RODFTab: a and b are 0 or 1, and indicate whether the input
(a) and/or output (b) are shifted by half a sample (1 means it is shifted). These are also
known as types I-IV of the DCT and DST, and all four types are supported by FFTW’s
r2r interface.

12 FFTW 3.1.1

Chapter 2: Tutorial 13

14 FFTW 3.1.1

Chapter 3: Other Important Topics 15

3 Other Important Topics

3.1 Data Alignment

In order to get the best performance from FFTW, one needs to be somewhat aware of two
problems related to data alignment on x86 (Pentia) architectures: alignment of allocated
arrays (for use with SIMD acceleration), and alignment of the stack.

3.1.1 SIMD alignment and fftw malloc

SIMD, which stands for “Single Instruction Multiple Data,” is a set of special operations
supported by some processors to perform a single operation on several numbers (usually
2 or 4) simultaneously. SIMD floating-point instructions are available on several popular
CPUs: SSE/SSE2 (single/double precision) on Pentium III/IV and higher, 3DNow! (single
precision) on the AMD K7 and higher, and AltiVec (single precision) on the PowerPC G4
and higher. FFTW can be compiled to support the SIMD instructions on any of these

Chapter 3: Other Important Topics 17

18 FFTW 3.1.1

int i,j;
fftw_complex ***a_bad_array; /*

http://www.eskimo.com/~scs/C-faq/s6.html

Chapter 3: Other Important Topics 19

Chapter 4: FFTW Reference 21

4 FFTW Reference

http://anubis.dkuug.dk/JTC1/SC22/WG21/docs/papers/2002/1388.pdf

22 FFTW 3.1.1

•

24 FFTW 3.1.1

Once you have created a plan for a certain transform type and parameters, then creating
another plan of the same type and parameters, but for different arrays, is fast and shares
constant data with the first plan (if it still exists).

The planner returns NULL if the plan cannot be created. A non-NULL plan is always returned
by the basic interface unless you are using a customized FFTW configuration supporting a
restricted set of transforms.

Arguments

• rank is the dimensionality of the transform (it should be the size of the array *n

Chapter 4: FFTW Reference 25

Planning-rigor flags

• FFTW_ESTIMATE specifies that, instead of actual measurements of different algorithms,
a simple heuristic is used to pick a (probably sub-optimal) plan quickly. With this flag,
the input/output arrays are not overwritten during planning.

• FFTW_MEASURE tells FFTW to find an optimized plan by actually computing several
FFTs and measuring their execution time. Depending on your machine, this can take
some time (often a few seconds). FFTW_MEASURE is the default planning option.

• FFTW_PATIENT is like FFTW_MEASURE, but considers a wider range of algorithms and
often produces a “more optimal” plan (especially for large transforms), but at the
expense of several times longer planning time (especially for large transforms).

• FFTW_EXHAUSTIVE is like FFTW_PATIENT

26 FFTW 3.1.1

Chapter 4: FFTW Reference 27

they must be allocated.) For an in-place transform, it is important to remember that
the real array will require padding, described in Section 4.3.4 [Real-data DFT Array
Format], page 27.

• flags is a bitwise OR (‘|

28 FFTW 3.1.1

For an out-of-place transform, the real data is simply an array with physical dimensions
n1 × n2 × n3 × · · · × nd

Chapter 4: FFTW Reference 29

means of a slow, general-purpose algorithm (which nevertheless retains O(n log n

30 FFTW 3.1.1

• FFTW_REDFT11 computes an REDFT11 transform, i.e. a DCT-IV. (Logical N=2*n,

Chapter 4: FFTW Reference 33

int is;
int os;

Chapter 4: FFTW Reference 35

Chapter 4: FFTW Reference 37

double *in, double *ro, double *io);

void fftw_execute_dft_c2r(
const fftw_plan p,
fftw_complex *in, double *out);

void fftw_execute_split_dft_c2r(
const fftw_plan p,
double *ri, double *ii, double *out);

void fftw_execute_r2r(
const fftw_plan p,
double *in, double *out);

These execute the plan

38 FFTW 3.1.1

fftw_export_wisdom_to_string returns a pointer to a NULL-terminated string holding the

40 FFTW 3.1.1

4.7.2 The 1d Real-data DFT

Chapter 4: FFTW Reference 41

REDFT00 (DCT-I)

An REDFT00 transform (type-I DCT) in FFTW is defined by:

Y

Chapter 4: FFTW Reference 43

Inverses and Normalization

http://www.openmp.org

48 FFTW 3.1.1

52 FFTW 3.1.1

The basic problem is that is difficult to (portably) pass files and strings between Fortran

54 FFTW 3.1.1

the generic fftw function to execute the transform with multiplicity (howmany) and stride
parameters, you would now use the advanced interface fftw_plan_many_dft to specify
those parameters. The plans are now executed with fftw_execute(plan), which takes all

56 FFTW 3.1.1

the new routine is called fftw_init_threads and returns zero on failure. See Section 5.1
[Multi-threaded FFTW], page 45.

http://www.fftw.org

58

http://www.gnu.org/prep/standards_toc.html

Chapter 8: Installation and Customization 59

K7 and others), or AltiVec (PowerPC G4+). SSE, 3dNow!, and AltiVec only work with
--enable-float (above), while SSE2 only works in double precision (the default). The
resulting code will still work on earlier CPUs lacking the SIMD extensions (SIMD is
automatically disabled, although the FFTW library is still larger).
− These options, with the exception of --enable-k7 (which uses assembly), require

a compiler supporting SIMD extensions, and compiler support is still a bit flaky:

60 FFTW 3.1.1

mailto:fftw@fftw.org
http://pauillac.inria.fr/ocaml/

Chapter 8: Installation and Customization 61

rdft/codelets/r2r/Makefile.am. After you modify any Makefile.am

mailto:fftw@fftw.org
http://www.fftw.org

Chapter 9: Acknowledgments 63

9 Acknowledgments

Matteo Frigo was supported in part by the Special Research Program SFB F011 “AU-
RORA” of the Austrian Science Fund FWF and by MIT Lincoln Laboratory. For previous
versions of FFTW, he was supported in part by the Defense Advanced Research Projects

http://caml.inria.fr/

Chapter 10: License and Copyright 65

http://www.gnu.org/copyleft/gpl.html
mailto:fftw@fftw.org

68 FFTW 3.1.1

planner . 1
portability 15,

Chapter 12: Library Index 69

12 Library Index

D
dfftw_destroy_plan . 50
dfftw_execute . 50
dfftw_export_wisdom . 52
dfftw_forget_wisdom . 52
dfftw_import_system_wisdom 52
dfftw_import_wisdom .

	Introduction
	Tutorial
	Complex One-Dimensional DFTs
	Complex Multi-Dimensional DFTs
	One-Dimensional DFTs of Real Data
	Multi-Dimensional DFTs of Real Data
	More DFTs of Real Data
	The Halfcomplex-format DFT
	Real even/odd DFTs (cosine/sine transforms)
	The Discrete Hartley Transform

	Other Important Topics
	Data Alignment
	SIMD alignment and fftw_malloc
	Stack alignment on x86

	Multi-dimensional Array Format
	Row-major Format
	Column-major Format
	Fixed-size Arrays in C
	Dynamic Arrays in C
	Dynamic Arrays in C---The Wrong Way

	Words of Wisdom---Saving Plans
	Caveats in Using Wisdom

	FFTW Reference
	Data Types and Files
	Complex numbers
	Precision
	Memory Allocation

	Using Plans
	Basic Interface
	Complex DFTs
	Planner Flags
	Real-data DFTs
	Real-data DFT Array Format
	Real-to-Real Transforms
	Real-to-Real Transform Kinds

	Advanced Interface
	Advanced Complex DFTs
	Advanced Real-data DFTs
	Advanced Real-to-real Transforms

	Guru Interface
	Interleaved and split arrays
	Guru vector and transform sizes
	Guru Complex DFTs
	Guru Real-data DFTs
	Guru Real-to-real Transforms
	Guru Execution of Plans

	Wisdom
	Wisdom Export
	Wisdom Import
	Forgetting Wisdom
	Wisdom Utilities

	What FFTW Really Computes
	The 1d Discrete Fourier Transform (DFT)
	The 1d Real-data DFT
	1d Real-even DFTs (DCTs)
	1d Real-odd DFTs (DSTs)
	1d Discrete Hartley Transforms (DHTs)
	Multi-dimensional Transforms

	Parallel FFTW
	Multi-threaded FFTW
	Installation and Supported Hardware/Software
	Usage of Multi-threaded FFTW
	How Many Threads to Use?

	Thread safety

	Calling FFTW from Fortran
	Fortran-interface routines
	FFTW Constants in Fortran
	Fortran Examples
	Wisdom of Fortran?

	Upgrading from FFTW version 2
	Installation and Customization
	Installation on Unix
	Installation on non-Unix systems
	Cycle Counters
	Generating your own code

	Acknowledgments
	License and Copyright
	Concept Index
	Library Index

