
FFTW
for version 3.2.1, 5 February 2009

Matteo Frigo
Steven G. Johnson

This manual is for FFTW (version 3.2.1, 5 February 2009).

Copyright c© 2003 Matteo Frigo.

Copyright c© 2003 Massachusetts Institute of Technology.

Permission is granted to make and distribute verbatim copies of this manual
provided the copyright notice and this permission notice are preserved on all
copies.

Permission is granted to copy and distribute modified versions of this manual
under the conditions for verbatim copying, provided that the entire resulting
derived work is distributed under the terms of a permission notice identical to
this one.

Permission is granted to copy and distribute translations of this manual into
another language, under the above conditions for modified versions, except
that this permission notice may be stated in a translation approved by the Free
Software Foundation.

i

Table of Contents

1 Introduction . 1

2 Tutorial . 3
2.1 Complex One-Dimensional DFTs . 3
2.2 Complex Multi-Dimensional DFTs . 5
2.3 One-Dimensional DFTs of Real Data . 6
2.4 Multi-Dimensional DFTs of Real Data . 7
2.5 More DFTs of Real Data . 10

2.5.1 The Halfcomplex-format DFT . 11
2.5.2 Real even/odd DFTs (cosine/sine transforms) 11
2.5.3 The Discrete Hartley Transform . 13

3 Other Important Topics. 15
3.1 Data Alignment . 15

3.1.1 SIMD alignment and fftw malloc . 15
3.1.2 Stack alignment on x86 . 15

3.2 Multi-dimensional Array Format . 16
3.2.1 Row-major Format . 16
3.2.2 Column-major Format . 16
3.2.3 Fixed-size Arrays in C . 16
3.2.4 Dynamic Arrays in C . 17
3.2.5 Dynamic Arrays in C—The Wrong Way 17

3.3 Words of Wisdom—Saving Plans . 18
3.4 Caveats in Using Wisdom . 19

4 FFTW Reference . 21
4.1 Data Types and Files . 21

4.1.1 Complex numbers . 21
4.1.2 Precision . 21
4.1.3 Memory Allocation . 22

4.2 Using Plans . 22
4.3 Basic Interface . 23

4.3.1 Complex DFTs . 23
4.3.2 Planner Flags . 24
4.3.3 Real-data DFTs . 26
4.3.4 Real-data DFT Array Format . 28
4.3.5 Real-to-Real Transforms . 28
4.3.6 Real-to-Real Transform Kinds . 29

4.4 Advanced Interface . 30
4.4.1 Advanced Complex DFTs . 30
4.4.2 Advanced Real-data DFTs . 31
4.4.3 Advanced Real-to-real Transforms . 32

ii FFTW 3.2.1

4.5 Guru Interface . 32
4.5.1 Interleaved and split arrays . 32
4.5.2 Guru vector and transform sizes . 33
4.5.3 Guru Complex DFTs . 33
4.5.4 Guru Real-data DFTs . 34
4.5.5 Guru Real-to-real Transforms . 36
4.5.6 64-bit Guru Interface . 36

4.6 New-array Execute Functions . 37
4.7 Wisdom . 38

4.7.1 Wisdom Export . 38
4.7.2 Wisdom Import . 39
4.7.3 Forgetting Wisdom . 39
4.7.4 Wisdom Utilities . 40

4.8 What FFTW Really Computes . 40
4.8.1 The 1d Discrete Fourier Transform (DFT) 40
4.8.2 The 1d Real-data DFT . 41
4.8.3 1d Real-even DFTs (DCTs) . 41
4.8.4 1d Real-odd DFTs (DSTs) . 43
4.8.5 1d Discrete Hartley Transforms (DHTs) 44
4.8.6 Multi-dimensional Transforms . 44

5 Multi-threaded FFTW . 47
5.1 Installation and Supported Hardware/Software 47
5.2 Usage of Multi-threaded FFTW . 47
5.3 How Many Threads to Use? . 48
5.4 Thread safety . 48

6 FFTW on the Cell Processor 51
6.1 Cell Installation . 51
6.2 Cell Caveats . 51
6.3 FFTW Accuracy on Cell . 52

7 Calling FFTW from Fortran 53
7.1 Fortran-interface routines . 53
7.2 FFTW Constants in Fortran . 54
7.3 FFTW Execution in Fortran . 54
7.4 Fortran Examples . 55
7.5 Wisdom of Fortran? . 56

8 Upgrading from FFTW version 2 59

9 Installation and Customization 63
9.1 Installation on Unix . 63
9.2 Installation on non-Unix systems . 65
9.3 Cycle Counters . 66
9.4 Generating your own code . 67

iii

10 Acknowledgments . 69

11 License and Copyright . 71

12 Concept Index . 73

13 Library Index . 75

Chapter 1: Introduction 1

1 Introduction

This manual documents version 3.2.1 of FFTW, the Fastest Fourier Transform in the West.
FFTW is a comprehensive collection of fast C routines for computing the discrete Fourier
transform (DFT) and various special cases thereof.

• FFTW computes the DFT of complex data, real data, even- or odd-symmetric real data
(these symmetric transforms are usually known as the discrete cosine or sine transform,
respectively), and the discrete Hartley transform (DHT) of real data.

• The input data can have arbitrary length. FFTW employs O(n log n) algorithms for
all lengths, including prime numbers.

• FFTW supports arbitrary multi-dimensional data.
• FFTW supports the SSE, SSE2, Altivec, and MIPS PS instruction sets.
• FFTW 3.2.1 includes parallel (multi-threaded) transforms for shared-memory systems.

FFTW 3.2.1 does not include distributed-memory parallel transforms, but we plan to
implement an MPI version soon. (Meanwhile, you can use the MPI implementation
from FFTW 2.1.3.)

We assume herein that you are familiar with the properties and uses of the DFT that
are relevant to your application. Otherwise, see e.g. The Fast Fourier Transform and Its
Applications by E. O. Brigham (Prentice-Hall, Englewood Cliffs, NJ, 1988). Our web page
also has links to FFT-related information online.

In order to use FFTW effectively, you need to learn one basic concept of FFTW’s internal
structure: FFTW does not use a fixed algorithm for computing the transform, but instead it
adapts the DFT algorithm to details of the underlying hardware in order to maximize per-
formance. Hence, the computation of the transform is split into two phases. First, FFTW’s
planner “learns” the fastest way to compute the transform on your machine. The planner
produces a data structure called a plan that contains this information. Subsequently, the
plan is executed to transform the array of input data as dictated by the plan. The plan can
be reused as many times as needed. In typical high-performance applications, many trans-
forms of the same size are computed and, consequently, a relatively expensive initialization
of this sort is acceptable. On the other hand, if you need a single transform of a given size,
the one-time cost of the planner becomes significant. For this case, FFTW provides fast
planners based on heuristics or on previously computed plans.

FFTW supports transforms of data with arbitrary length, rank, multiplicity, and a general
memory layout. In simple cases, however, this generality may be unnecessary and confusing.
Consequently, we organized the interface to FFTW into three levels of increasing generality.

• The basic interface computes a single transform of contiguous data.
• The advanced interface computes transforms of multiple or strided arrays.
• The guru interface supports the most general data layouts, multiplicities, and strides.

We expect that most users will be best served by the basic interface, whereas the guru
interface requires careful attention to the documentation to avoid problems.

Besides the automatic performance adaptation performed by the planner, it is also possible
for advanced users to customize FFTW manually. For example, if code space is a concern, we

http://www.fftw.org

2 FFTW 3.2.1

provide a tool that links only the subset of FFTW needed by your application. Conversely,
you may need to extend FFTW because the standard distribution is not sufficient for your
needs. For example, the standard FFTW distribution works most efficiently for arrays
whose size can be factored into small primes (2, 3, 5, and 7), and otherwise it uses a slower
general-purpose routine. If you need efficient transforms of other sizes, you can use FFTW’s
code generator, which produces fast C programs (“codelets”) for any particular array size
you may care about. For example, if you need transforms of size 513 = 19 · 33, you can
customize FFTW to support the factor 19 efficiently.

For more information regarding FFTW, see the paper, “The Design and Implementation of
FFTW3,” by M. Frigo and S. G. Johnson, which was an invited paper in Proc. IEEE 93
(2), p. 216 (2005). The code generator is described in the paper “A fast Fourier transform
compiler”, by M. Frigo, in the Proceedings of the 1999 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), Atlanta, Georgia, May 1999.
These papers, along with the latest version of FFTW, the FAQ, benchmarks, and other
links, are available at the FFTW home page.

The current version of FFTW incorporates many good ideas from the past thirty years
of FFT literature. In one way or another, FFTW uses the Cooley-Tukey algorithm, the
prime factor algorithm, Rader’s algorithm for prime sizes, and a split-radix algorithm (with
a variation due to Dan Bernstein). FFTW’s code generator also produces new algorithms
that we do not completely understand. The reader is referred to the cited papers for the
appropriate references.

The rest of this manual is organized as follows. We first discuss the sequential (single-
processor) implementation. We start by describing the basic interface/features of FFTW in
Chapter 2 [Tutorial], page 3. The following chapter discusses Chapter 3 [Other Important
Topics], page 15, including Section 3.1 [Data Alignment], page 15, the storage scheme of
multi-dimensional arrays (see Section 3.2 [Multi-dimensional Array Format], page 16), and
FFTW’s mechanism for storing plans on disk (see Section 3.3 [Words of Wisdom-Saving
Plans], page 18). Next, Chapter 4 [FFTW Reference], page 21 provides comprehensive
documentation of all FFTW’s features. Parallel transforms are discussed in their own
chapters: Chapter 5 [Multi-threaded FFTW], page 47. Fortran programmers can also use
FFTW, as described in Chapter 7 [Calling FFTW from Fortran], page 53. Chapter 9
[Installation and Customization], page 63 explains how to install FFTW in your computer
system and how to adapt FFTW to your needs. License and copyright information is given
in Chapter 11 [License and Copyright], page 71. Finally, we thank all the people who helped
us in Chapter 10 [Acknowledgments], page 69.

http://www.fftw.org

Chapter 2: Tutorial 3

2 Tutorial

This chapter describes the basic usage of FFTW, i.e., how to compute the Fourier transform
of a single array. This chapter tells the truth, but not the whole truth. Specifically, FFTW
implements additional routines and flags that are not documented here, although in many
cases we try to indicate where added capabilities exist. For more complete information,
see Chapter 4 [FFTW Reference], page 21. (Note that you need to compile and install
FFTW before you can use it in a program. For the details of the installation, see Chapter 9
[Installation and Customization], page 63.)

We recommend that you read this tutorial in order.1 At the least, read the first section (see
Section 2.1 [Complex One-Dimensional DFTs], page 3) before reading any of the others,
even if your main interest lies in one of the other transform types.

Users of FFTW version 2 and earlier may also want to read Chapter 8 [Upgrading from
FFTW version 2], page 59.

2.1 Complex One-Dimensional DFTs

Plan: To bother about the best method of accomplishing an accidental result.
[Ambrose Bierce, The Enlarged Devil’s Dictionary.]

The basic usage of FFTW to compute a one-dimensional DFT of size N is simple, and it
typically looks something like this code:

#include <fftw3.h>
...
{

fftw_complex *in, *out;
fftw_plan p;
...
in = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * N);
out = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * N);
p = fftw_plan_dft_1d(N, in, out, FFTW_FORWARD, FFTW_ESTIMATE);
...
fftw_execute(p); /* repeat as needed */
...
fftw_destroy_plan(p);
fftw_free(in); fftw_free(out);

}

(When you compile, you must also link with the fftw3 library, e.g. -lfftw3 -lm on Unix
systems.)

First you allocate the input and output arrays. You can allocate them in any way that
you like, but we recommend using fftw_malloc, which behaves like malloc except that it
properly aligns the array when SIMD instructions (such as SSE and Altivec) are available
(see Section 3.1.1 [SIMD alignment and fftw malloc], page 15).

1 You can read the tutorial in bit-reversed order after computing your first transform.

4 FFTW 3.2.1

The data is an array of type fftw_complex, which is by default a double[2] composed of
the real (in[i][0]) and imaginary (in[i][1]) parts of a complex number.

The next step is to create a plan, which is an object that contains all the data that FFTW
needs to compute the FFT. This function creates the plan:

fftw_plan fftw_plan_dft_1d(int n, fftw_complex *in, fftw_complex *out,
int sign, unsigned flags);

The first argument, n, is the size of the transform you are trying to compute. The size n
can be any positive integer, but sizes that are products of small factors are transformed
most efficiently (although prime sizes still use an O(n log n) algorithm).

The next two arguments are pointers to the input and output arrays of the transform.
These pointers can be equal, indicating an in-place transform.

The fourth argument, sign, can be either FFTW_FORWARD (-1) or FFTW_BACKWARD (+1), and
indicates the direction of the transform you are interested in; technically, it is the sign of
the exponent in the transform.

The flags argument is usually either FFTW_MEASURE or FFTW_ESTIMATE. FFTW_MEASURE
instructs FFTW to run and measure the execution time of several FFTs in order to find the
best way to compute the transform of size n. This process takes some time (usually a few
seconds), depending on your machine and on the size of the transform. FFTW_ESTIMATE,
on the contrary, does not run any computation and just builds a reasonable plan that is
probably sub-optimal. In short, if your program performs many transforms of the same size
and initialization time is not important, use FFTW_MEASURE; otherwise use the estimate. The
data in the in/out arrays is overwritten during FFTW_MEASURE planning, so such planning
should be done before the input is initialized by the user.

Once the plan has been created, you can use it as many times as you like for transforms on
the specified in/out arrays, computing the actual transforms via fftw_execute(plan):

void fftw_execute(const fftw_plan plan);

If you want to transform a different array of the same size, you can create a new plan with
fftw_plan_dft_1d and FFTW automatically reuses the information from the previous
plan, if possible. (Alternatively, with the “guru” interface you can apply a given plan to a
different array, if you are careful. See Chapter 4 [FFTW Reference], page 21.)

When you are done with the plan, you deallocate it by calling fftw_destroy_plan(plan):

void fftw_destroy_plan(fftw_plan plan);

Arrays allocated with fftw_malloc should be deallocated by fftw_free rather than the
ordinary free (or, heaven forbid, delete).

The DFT results are stored in-order in the array out, with the zero-frequency (DC) com-
ponent in out[0]. If in != out, the transform is out-of-place and the input array in is not
modified. Otherwise, the input array is overwritten with the transform.

Users should note that FFTW computes an unnormalized DFT. Thus, computing a forward
followed by a backward transform (or vice versa) results in the original array scaled by n.
For the definition of the DFT, see Section 4.8 [What FFTW Really Computes], page 40.

Chapter 2: Tutorial 5

If you have a C compiler, such as gcc, that supports the recent C99 standard, and
you #include <complex.h> before <fftw3.h>, then fftw_complex is the native
double-precision complex type and you can manipulate it with ordinary arithmetic.
Otherwise, FFTW defines its own complex type, which is bit-compatible with the C99
complex type. See Section 4.1.1 [Complex numbers], page 21. (The C++ <complex>
template class may also be usable via a typecast.)

Single and long-double precision versions of FFTW may be installed; to use them, replace
the fftw_ prefix by fftwf_ or fftwl_ and link with -lfftw3f or -lfftw3l, but use the
same <fftw3.h> header file.

Many more flags exist besides FFTW_MEASURE and FFTW_ESTIMATE. For example, use FFTW_
PATIENT if you’re willing to wait even longer for a possibly even faster plan (see Chapter 4
[FFTW Reference], page 21). You can also save plans for future use, as described by
Section 3.3 [Words of Wisdom-Saving Plans], page 18.

2.2 Complex Multi-Dimensional DFTs

Multi-dimensional transforms work much the same way as one-dimensional transforms: you
allocate arrays of fftw_complex (preferably using fftw_malloc), create an fftw_plan,
execute it as many times as you want with fftw_execute(plan), and clean up with fftw_
destroy_plan(plan) (and fftw_free). The only difference is the routine you use to create
the plan:

fftw_plan fftw_plan_dft_2d(int n0, int n1,
fftw_complex *in, fftw_complex *out,
int sign, unsigned flags);

fftw_plan fftw_plan_dft_3d(int n0, int n1, int n2,
fftw_complex *in, fftw_complex *out,
int sign, unsigned flags);

fftw_plan fftw_plan_dft(int rank, const int *n,
fftw_complex *in, fftw_complex *out,
int sign, unsigned flags);

These routines create plans for n0 by n1 two-dimensional (2d) transforms, n0 by n1 by n2
3d transforms, and arbitrary rank-dimensional transforms, respectively. In the third case, n
is a pointer to an array n[rank] denoting an n[0] by n[1] by . . . by n[rank-1] transform.
All of these transforms operate on contiguous arrays in the C-standard row-major order, so
that the last dimension has the fastest-varying index in the array. This layout is described
further in Section 3.2 [Multi-dimensional Array Format], page 16.

You may have noticed that all the planner routines described so far have overlapping func-
tionality. For example, you can plan a 1d or 2d transform by using fftw_plan_dft with
a rank of 1 or 2, or even by calling fftw_plan_dft_3d with n0 and/or n1 equal to 1
(with no loss in efficiency). This pattern continues, and FFTW’s planning routines in gen-
eral form a “partial order,” sequences of interfaces with strictly increasing generality but
correspondingly greater complexity.

fftw_plan_dft is the most general complex-DFT routine that we describe in this tutorial,
but there are also the advanced and guru interfaces, which allow one to efficiently combine

6 FFTW 3.2.1

multiple/strided transforms into a single FFTW plan, transform a subset of a larger multi-
dimensional array, and/or to handle more general complex-number formats. For more
information, see Chapter 4 [FFTW Reference], page 21.

2.3 One-Dimensional DFTs of Real Data

In many practical applications, the input data in[i] are purely real numbers, in which case
the DFT output satisfies the “Hermitian” redundancy: out[i] is the conjugate of out[n-
i]. It is possible to take advantage of these circumstances in order to achieve roughly a
factor of two improvement in both speed and memory usage.

In exchange for these speed and space advantages, the user sacrifices some of the simplicity
of FFTW’s complex transforms. First of all, the input and output arrays are of different
sizes and types: the input is n real numbers, while the output is n/2+1 complex numbers
(the non-redundant outputs); this also requires slight “padding” of the input array for in-
place transforms. Second, the inverse transform (complex to real) has the side-effect of
destroying its input array, by default. Neither of these inconveniences should pose a serious
problem for users, but it is important to be aware of them.

The routines to perform real-data transforms are almost the same as those for complex trans-
forms: you allocate arrays of double and/or fftw_complex (preferably using fftw_malloc),
create an fftw_plan, execute it as many times as you want with fftw_execute(plan), and
clean up with fftw_destroy_plan(plan) (and fftw_free). The only differences are that
the input (or output) is of type double and there are new routines to create the plan. In
one dimension:

fftw_plan fftw_plan_dft_r2c_1d(int n, double *in, fftw_complex *out,
unsigned flags);

fftw_plan fftw_plan_dft_c2r_1d(int n, fftw_complex *in, double *out,
unsigned flags);

for the real input to complex-Hermitian output (r2c) and complex-Hermitian input to real
output (c2r) transforms. Unlike the complex DFT planner, there is no sign argument.
Instead, r2c DFTs are always FFTW_FORWARD and c2r DFTs are always FFTW_BACKWARD.
(For single/long-double precision fftwf and fftwl, double should be replaced by float
and long double, respectively.)

Here, n is the “logical” size of the DFT, not necessarily the physical size of the array. In
particular, the real (double) array has n elements, while the complex (fftw_complex) array
has n/2+1 elements (where the division is rounded down). For an in-place transform, in
and out are aliased to the same array, which must be big enough to hold both; so, the
real array would actually have 2*(n/2+1) elements, where the elements beyond the first n
are unused padding. The kth element of the complex array is exactly the same as the kth
element of the corresponding complex DFT. All positive n are supported; products of small
factors are most efficient, but an O(n log n) algorithm is used even for prime sizes.

As noted above, the c2r transform destroys its input array even for out-of-place transforms.
This can be prevented, if necessary, by including FFTW_PRESERVE_INPUT in the flags, with
unfortunately some sacrifice in performance. This flag is also not currently supported for
multi-dimensional real DFTs (next section).

Chapter 2: Tutorial 7

Readers familiar with DFTs of real data will recall that the 0th (the “DC”) and n/2-th (the
“Nyquist” frequency, when n is even) elements of the complex output are purely real. Some
implementations therefore store the Nyquist element where the DC imaginary part would
go, in order to make the input and output arrays the same size. Such packing, however, does
not generalize well to multi-dimensional transforms, and the space savings are miniscule in
any case; FFTW does not support it.

An alternative interface for one-dimensional r2c and c2r DFTs can be found in the ‘r2r’
interface (see Section 2.5.1 [The Halfcomplex-format DFT], page 11), with “halfcomplex”-
format output that is the same size (and type) as the input array. That interface, although
it is not very useful for multi-dimensional transforms, may sometimes yield better perfor-
mance.

2.4 Multi-Dimensional DFTs of Real Data

Multi-dimensional DFTs of real data use the following planner routines:

fftw_plan fftw_plan_dft_r2c_2d(int n0, int n1,
double *in, fftw_complex *out,
unsigned flags);

fftw_plan fftw_plan_dft_r2c_3d(int n0, int n1, int n2,
double *in, fftw_complex *out,
unsigned flags);

fftw_plan fftw_plan_dft_r2c(int rank, const int *n,
double *in, fftw_complex *out,
unsigned flags);

as well as the corresponding c2r routines with the input/output types swapped. These
routines work similarly to their complex analogues, except for the fact that here the complex
output array is cut roughly in half and the real array requires padding for in-place transforms
(as in 1d, above).

As before, n is the logical size of the array, and the consequences of this on the the format
of the complex arrays deserve careful attention. Suppose that the real data has dimensions
n0 × n1 × n2 × · · · × nd−1 (in row-major order). Then, after an r2c transform, the output
is an n0 × n1 × n2 × · · · × (nd−1/2 + 1) array of fftw_complex values in row-major order,
corresponding to slightly over half of the output of the corresponding complex DFT. (The
division is rounded down.) The ordering of the data is otherwise exactly the same as in the
complex-DFT case.

Since the complex data is slightly larger than the real data, some complications arise for
in-place transforms. In this case, the final dimension of the real data must be padded
with extra values to accommodate the size of the complex data—two values if the last
dimension is even and one if it is odd. That is, the last dimension of the real data must
physically contain 2(nd−1/2 + 1) double values (exactly enough to hold the complex data).
This physical array size does not, however, change the logical array size—only nd−1 values
are actually stored in the last dimension, and nd−1 is the last dimension passed to the
plan-creation routine.

For example, consider the transform of a two-dimensional real array of size n0 by n1. The
output of the r2c transform is a two-dimensional complex array of size n0 by n1/2+1, where

8 FFTW 3.2.1

the y dimension has been cut nearly in half because of redundancies in the output. Because
fftw_complex is twice the size of double, the output array is slightly bigger than the input
array. Thus, if we want to compute the transform in place, we must pad the input array so
that it is of size n0 by 2*(n1/2+1). If n1 is even, then there are two padding elements at
the end of each row (which need not be initialized, as they are only used for output).

Chapter 2: Tutorial 9

The following illustration depicts the input and output arrays just described, for both
the out-of-place and in-place transforms (with the arrows indicating consecutive memory
locations):

10 FFTW 3.2.1

These transforms are unnormalized, so an r2c followed by a c2r transform (or vice versa)
will result in the original data scaled by the number of real data elements—that is, the
product of the (logical) dimensions of the real data.

(Because the last dimension is treated specially, if it is equal to 1 the transform is not equiv-
alent to a lower-dimensional r2c/c2r transform. In that case, the last complex dimension
also has size 1 (=1/2+1), and no advantage is gained over the complex transforms.)

2.5 More DFTs of Real Data

FFTW supports several other transform types via a unified r2r (real-to-real) interface, so
called because it takes a real (double) array and outputs a real array of the same size.
These r2r transforms currently fall into three categories: DFTs of real input and complex-
Hermitian output in halfcomplex format, DFTs of real input with even/odd symmetry
(a.k.a. discrete cosine/sine transforms, DCTs/DSTs), and discrete Hartley transforms
(DHTs), all described in more detail by the following sections.

The r2r transforms follow the by now familiar interface of creating an fftw_plan, exe-
cuting it with fftw_execute(plan), and destroying it with fftw_destroy_plan(plan).
Furthermore, all r2r transforms share the same planner interface:

fftw_plan fftw_plan_r2r_1d(int n, double *in, double *out,
fftw_r2r_kind kind, unsigned flags);

fftw_plan fftw_plan_r2r_2d(int n0, int n1, double *in, double *out,
fftw_r2r_kind kind0, fftw_r2r_kind kind1,
unsigned flags);

fftw_plan fftw_plan_r2r_3d(int n0, int n1, int n2,
double *in, double *out,
fftw_r2r_kind kind0,
fftw_r2r_kind kind1,
fftw_r2r_kind kind2,
unsigned flags);

fftw_plan fftw_plan_r2r(int rank, const int *n, double *in, double *out,
const fftw_r2r_kind *kind, unsigned flags);

Just as for the complex DFT, these plan 1d/2d/3d/multi-dimensional transforms for con-
tiguous arrays in row-major order, transforming (real) input to output of the same size,
where n specifies the physical dimensions of the arrays. All positive n are supported (with
the exception of n=1 for the FFTW_REDFT00 kind, noted in the real-even subsection below);
products of small factors are most efficient (factorizing n-1 and n+1 for FFTW_REDFT00 and
FFTW_RODFT00 kinds, described below), but an O(n log n) algorithm is used even for prime
sizes.

Each dimension has a kind parameter, of type fftw_r2r_kind, specifying the kind of r2r
transform to be used for that dimension. (In the case of fftw_plan_r2r, this is an array
kind[rank] where kind[i] is the transform kind for the dimension n[i].) The kind can
be one of a set of predefined constants, defined in the following subsections.

In other words, FFTW computes the separable product of the specified r2r transforms
over each dimension, which can be used e.g. for partial differential equations with mixed
boundary conditions. (For some r2r kinds, notably the halfcomplex DFT and the DHT,

Chapter 2: Tutorial 11

such a separable product is somewhat problematic in more than one dimension, however,
as is described below.)

In the current version of FFTW, all r2r transforms except for the halfcomplex type are com-
puted via pre- or post-processing of halfcomplex transforms, and they are therefore not as
fast as they could be. Since most other general DCT/DST codes employ a similar algorithm,
however, FFTW’s implementation should provide at least competitive performance.

2.5.1 The Halfcomplex-format DFT

An r2r kind of FFTW_R2HC (r2hc) corresponds to an r2c DFT (see Section 2.3
[One-Dimensional DFTs of Real Data], page 6) but with “halfcomplex” format output,
and may sometimes be faster and/or more convenient than the latter. The inverse hc2r
transform is of kind FFTW_HC2R. This consists of the non-redundant half of the complex
output for a 1d real-input DFT of size n, stored as a sequence of n real numbers (double)
in the format:

r0, r1, r2, . . . , rn/2, i(n+1)/2−1, . . . , i2, i1

Here, rk is the real part of the kth output, and ik is the imaginary part. (Division by 2
is rounded down.) For a halfcomplex array hc[n], the kth component thus has its real
part in hc[k] and its imaginary part in hc[n-k], with the exception of k == 0 or n/2 (the
latter only if n is even)—in these two cases, the imaginary part is zero due to symmetries
of the real-input DFT, and is not stored. Thus, the r2hc transform of n real values is a
halfcomplex array of length n, and vice versa for hc2r.

Aside from the differing format, the output of FFTW_R2HC/FFTW_HC2R is otherwise exactly
the same as for the corresponding 1d r2c/c2r transform (i.e. FFTW_FORWARD/FFTW_BACKWARD
transforms, respectively). Recall that these transforms are unnormalized, so r2hc followed
by hc2r will result in the original data multiplied by n. Furthermore, like the c2r transform,
an out-of-place hc2r transform will destroy its input array.

Although these halfcomplex transforms can be used with the multi-dimensional r2r interface,
the interpretation of such a separable product of transforms along each dimension is prob-
lematic. For example, consider a two-dimensional n0 by n1, r2hc by r2hc transform planned
by fftw_plan_r2r_2d(n0, n1, in, out, FFTW_R2HC, FFTW_R2HC, FFTW_MEASURE). Con-
ceptually, FFTW first transforms the rows (of size n1) to produce halfcomplex rows, and
then transforms the columns (of size n0). Half of these column transforms, however, are
of imaginary parts, and should therefore be multiplied by i and combined with the r2hc
transforms of the real columns to produce the 2d DFT amplitudes; FFTW’s r2r transform
does not perform this combination for you. Thus, if a multi-dimensional real-input/output
DFT is required, we recommend using the ordinary r2c/c2r interface (see Section 2.4 [Multi-
Dimensional DFTs of Real Data], page 7).

2.5.2 Real even/odd DFTs (cosine/sine transforms)

The Fourier transform of a real-even function f(−x) = f(x) is real-even, and i times
the Fourier transform of a real-odd function f(−x) = −f(x) is real-odd. Similar results
hold for a discrete Fourier transform, and thus for these symmetries the need for complex
inputs/outputs is entirely eliminated. Moreover, one gains a factor of two in speed/space

12 FFTW 3.2.1

from the fact that the data are real, and an additional factor of two from the even/odd
symmetry: only the non-redundant (first) half of the array need be stored. The result is
the real-even DFT (REDFT) and the real-odd DFT (RODFT), also known as the discrete
cosine and sine transforms (DCT and DST), respectively.

(In this section, we describe the 1d transforms; multi-dimensional transforms are just a
separable product of these transforms operating along each dimension.)

Because of the discrete sampling, one has an additional choice: is the data even/odd around
a sampling point, or around the point halfway between two samples? The latter corresponds
to shifting the samples by half an interval, and gives rise to several transform variants
denoted by REDFTab and RODFTab: a and b are 0 or 1, and indicate whether the input
(a) and/or output (b) are shifted by half a sample (1 means it is shifted). These are also
known as types I-IV of the DCT and DST, and all four types are supported by FFTW’s
r2r interface.2

The r2r kinds for the various REDFT and RODFT types supported by FFTW, along with
the boundary conditions at both ends of the input array (n real numbers in[j=0..n-1]),
are:

• FFTW_REDFT00 (DCT-I): even around j = 0 and even around j = n− 1.
• FFTW_REDFT10 (DCT-II, “the” DCT): even around j = −0.5 and even around j =

n− 0.5.
• FFTW_REDFT01 (DCT-III, “the” IDCT): even around j = 0 and odd around j = n.
• FFTW_REDFT11 (DCT-IV): even around j = −0.5 and odd around j = n− 0.5.
• FFTW_RODFT00 (DST-I): odd around j = −1 and odd around j = n.
• FFTW_RODFT10 (DST-II): odd around j = −0.5 and odd around j = n− 0.5.
• FFTW_RODFT01 (DST-III): odd around j = −1 and even around j = n− 1.
• FFTW_RODFT11 (DST-IV): odd around j = −0.5 and even around j = n− 0.5.

Note that these symmetries apply to the “logical” array being transformed; there are no
constraints on your physical input data. So, for example, if you specify a size-5 REDFT00
(DCT-I) of the data abcde, it corresponds to the DFT of the logical even array abcdedcb of
size 8. A size-4 REDFT10 (DCT-II) of the data abcd corresponds to the size-8 logical DFT
of the even array abcddcba, shifted by half a sample.

All of these transforms are invertible. The inverse of R*DFT00 is R*DFT00; of R*DFT10 is
R*DFT01 and vice versa (these are often called simply “the” DCT and IDCT, respectively);
and of R*DFT11 is R*DFT11. However, the transforms computed by FFTW are unnor-
malized, exactly like the corresponding real and complex DFTs, so computing a transform
followed by its inverse yields the original array scaled by N , where N is the logical DFT
size. For REDFT00, N = 2(n− 1); for RODFT00, N = 2(n + 1); otherwise, N = 2n.

Note that the boundary conditions of the transform output array are given by the input
boundary conditions of the inverse transform. Thus, the above transforms are all inequiva-
lent in terms of input/output boundary conditions, even neglecting the 0.5 shift difference.

2 There are also type V-VIII transforms, which correspond to a logical DFT of odd size N , independent of
whether the physical size n is odd, but we do not support these variants.

Chapter 2: Tutorial 13

FFTW is most efficient when N is a product of small factors; note that this differs from the
factorization of the physical size n for REDFT00 and RODFT00! There is another oddity:
n=1 REDFT00 transforms correspond to N = 0, and so are not defined (the planner will
return NULL). Otherwise, any positive n is supported.

For the precise mathematical definitions of these transforms as used by FFTW, see
Section 4.8 [What FFTW Really Computes], page 40. (For people accustomed to the
DCT/DST, FFTW’s definitions have a coefficient of 2 in front of the cos/sin functions so
that they correspond precisely to an even/odd DFT of size N . Some authors also include
additional multiplicative factors of

√
2 for selected inputs and outputs; this makes the

transform orthogonal, but sacrifices the direct equivalence to a symmetric DFT.)

Which type do you need?

Since the required flavor of even/odd DFT depends upon your problem, you are the best
judge of this choice, but we can make a few comments on relative efficiency to help you
in your selection. In particular, R*DFT01 and R*DFT10 tend to be slightly faster than
R*DFT11 (especially for odd sizes), while the R*DFT00 transforms are sometimes signifi-
cantly slower (especially for even sizes).3

Thus, if only the boundary conditions on the transform inputs are specified, we generally
recommend R*DFT10 over R*DFT00 and R*DFT01 over R*DFT11 (unless the half-sample
shift or the self-inverse property is significant for your problem).

If performance is important to you and you are using only small sizes (say n < 200), e.g. for
multi-dimensional transforms, then you might consider generating hard-coded transforms
of those sizes and types that you are interested in (see Section 9.4 [Generating your own
code], page 67).

We are interested in hearing what types of symmetric transforms you find most useful.

2.5.3 The Discrete Hartley Transform

The discrete Hartley transform (DHT) is an invertible linear transform closely related to
the DFT. In the DFT, one multiplies each input by cos− i ∗ sin (a complex exponential),
whereas in the DHT each input is multiplied by simply cos+sin. Thus, the DHT transforms
n real numbers to n real numbers, and has the convenient property of being its own inverse.
In FFTW, a DHT (of any positive n) can be specified by an r2r kind of FFTW_DHT.

If you are planning to use the DHT because you’ve heard that it is “faster” than the DFT
(FFT), stop here. That story is an old but enduring misconception that was debunked in
1987: a properly designed real-input FFT (such as FFTW’s) has no more operations in
general than an FHT. Moreover, in FFTW, the DHT is ordinarily slower than the DFT for
composite sizes (see below).

3 R*DFT00 is sometimes slower in FFTW because we discovered that the standard algorithm for computing
this by a pre/post-processed real DFT—the algorithm used in FFTPACK, Numerical Recipes, and other
sources for decades now—has serious numerical problems: it already loses several decimal places of accuracy
for 16k sizes. There seem to be only two alternatives in the literature that do not suffer similarly: a recursive
decomposition into smaller DCTs, which would require a large set of codelets for efficiency and generality,
or sacrificing a factor of ∼ 2 in speed to use a real DFT of twice the size. We currently employ the latter
technique for general n, as well as a limited form of the former method: a split-radix decomposition when
n is odd (N a multiple of 4). For N containing many factors of 2, the split-radix method seems to recover
most of the speed of the standard algorithm without the accuracy tradeoff.

14 FFTW 3.2.1

Like the DFT, in FFTW the DHT is unnormalized, so computing a DHT of size n followed
by another DHT of the same size will result in the original array multiplied by n.

The DHT was originally proposed as a more efficient alternative to the DFT for real data,
but it was subsequently shown that a specialized DFT (such as FFTW’s r2hc or r2c trans-
forms) could be just as fast. In FFTW, the DHT is actually computed by post-processing
an r2hc transform, so there is ordinarily no reason to prefer it from a performance per-
spective.4 However, we have heard rumors that the DHT might be the most appropriate
transform in its own right for certain applications, and we would be very interested to hear
from anyone who finds it useful.

If FFTW_DHT is specified for multiple dimensions of a multi-dimensional transform, FFTW
computes the separable product of 1d DHTs along each dimension. Unfortunately, this is
not quite the same thing as a true multi-dimensional DHT; you can compute the latter, if
necessary, with at most rank-1 post-processing passes [see e.g. H. Hao and R. N. Bracewell,
Proc. IEEE 75, 264–266 (1987)].

For the precise mathematical definition of the DHT as used by FFTW, see Section 4.8
[What FFTW Really Computes], page 40.

4 We provide the DHT mainly as a byproduct of some internal algorithms. FFTW computes a real in-
put/output DFT of prime size by re-expressing it as a DHT plus post/pre-processing and then using Rader’s
prime-DFT algorithm adapted to the DHT.

Chapter 3: Other Important Topics 15

3 Other Important Topics

3.1 Data Alignment

In order to get the best performance from FFTW, one needs to be somewhat aware of two
problems related to data alignment on x86 (Pentia) architectures: alignment of allocated
arrays (for use with SIMD acceleration), and alignment of the stack.

3.1.1 SIMD alignment and fftw malloc

SIMD, which stands for “Single Instruction Multiple Data,” is a set of special operations
supported by some processors to perform a single operation on several numbers (usually
2 or 4) simultaneously. SIMD floating-point instructions are available on several popular
CPUs: SSE/SSE2 (single/double precision) on Pentium III and higher and on AMD64,
AltiVec (single precision) on some PowerPCs (Apple G4 and higher), and MIPS Paired
Single. FFTW can be compiled to support the SIMD instructions on any of these systems.

A program linking to an FFTW library compiled with SIMD support can obtain a nonneg-
ligible speedup for most complex and r2c/c2r transforms. In order to obtain this speedup,
however, the arrays of complex (or real) data passed to FFTW must be specially aligned in
memory (typically 16-byte aligned), and often this alignment is more stringent than that
provided by the usual malloc (etc.) allocation routines.

In order to guarantee proper alignment for SIMD, therefore, in case your program is ever
linked against a SIMD-using FFTW, we recommend allocating your transform data with
fftw_malloc and de-allocating it with fftw_free. These have exactly the same interface
and behavior as malloc/free, except that for a SIMD FFTW they ensure that the returned
pointer has the necessary alignment (by calling memalign or its equivalent on your OS).

You are not required to use fftw_malloc. You can allocate your data in any way that you
like, from malloc to new (in C++) to a fixed-size array declaration. If the array happens
not to be properly aligned, FFTW will not use the SIMD extensions.

3.1.2 Stack alignment on x86

On the Pentium and subsequent x86 processors, there is a substantial performance penalty
if double-precision variables are not stored 8-byte aligned; a factor of two or more is not
unusual. Unfortunately, the stack (the place that local variables and subroutine arguments
live) is not guaranteed by the Intel ABI to be 8-byte aligned.

Recent versions of gcc (as well as most other compilers, we are told, such as Intel’s, Metrow-
erks’, and Microsoft’s) are able to keep the stack 8-byte aligned; gcc does this by default (see
-mpreferred-stack-boundary in the gcc documentation). If you are not certain whether
your compiler maintains stack alignment by default, it is a good idea to make sure.

Unfortunately, gcc only preserves the stack alignment—as a result, if the stack starts off
misaligned, it will always be misaligned, with a disastrous effect on performance (in double
precision). To prevent this, FFTW includes hacks to align its own stack if necessary, so it
should perform well even if you call it from a program with a misaligned stack. Currently,
our hacks support gcc and the Intel C compiler; if you use another compiler you are on

16 FFTW 3.2.1

your own. Fortunately, recent versions of glibc (on GNU/Linux) provide a properly-aligned
starting stack, but this was not the case with a number of older versions, and we are not
certain of the situation on other operating systems. Hopefully, as time goes by this will
become less of a concern.

3.2 Multi-dimensional Array Format

This section describes the format in which multi-dimensional arrays are stored in FFTW.
We felt that a detailed discussion of this topic was necessary. Since several different formats
are common, this topic is often a source of confusion among users.

3.2.1 Row-major Format

The multi-dimensional arrays passed to fftw_plan_dft etcetera are expected to be stored
as a single contiguous block in row-major order (sometimes called “C order”). Basically,
this means that as you step through adjacent memory locations, the first dimension’s index
varies most slowly and the last dimension’s index varies most quickly.

To be more explicit, let us consider an array of rank d whose dimensions are n0×n1×n2×
· · ·×nd−1 . Now, we specify a location in the array by a sequence of d (zero-based) indices,
one for each dimension: (i0, i1, i2, . . . , id−1). If the array is stored in row-major order, then
this element is located at the position id−1 + nd−1(id−2 + nd−2(. . . + n1i0)).

Note that, for the ordinary complex DFT, each element of the array must be of type fftw_
complex; i.e. a (real, imaginary) pair of (double-precision) numbers.

In the advanced FFTW interface, the physical dimensions n from which the indices are
computed can be different from (larger than) the logical dimensions of the transform to be
computed, in order to transform a subset of a larger array. Note also that, in the advanced
interface, the expression above is multiplied by a stride to get the actual array index—this
is useful in situations where each element of the multi-dimensional array is actually a data
structure (or another array), and you just want to transform a single field. In the basic
interface, however, the stride is 1.

3.2.2 Column-major Format

Readers from the Fortran world are used to arrays stored in column-major order (sometimes
called “Fortran order”). This is essentially the exact opposite of row-major order in that,
here, the first dimension’s index varies most quickly.

If you have an array stored in column-major order and wish to transform it using FFTW,
it is quite easy to do. When creating the plan, simply pass the dimensions of the array to
the planner in reverse order. For example, if your array is a rank three N x M x L matrix in
column-major order, you should pass the dimensions of the array as if it were an L x M x N
matrix (which it is, from the perspective of FFTW). This is done for you automatically by
the FFTW Fortran interface (see Chapter 7 [Calling FFTW from Fortran], page 53).

3.2.3 Fixed-size Arrays in C

A multi-dimensional array whose size is declared at compile time in C is already in row-
major order. You don’t have to do anything special to transform it. For example:

{

Chapter 3: Other Important Topics 17

fftw_complex data[N0][N1][N2];
fftw_plan plan;
...
plan = fftw_plan_dft_3d(N0, N1, N2, &data[0][0][0], &data[0][0][0],

FFTW_FORWARD, FFTW_ESTIMATE);
...

}

This will plan a 3d in-place transform of size N0 x N1 x N2. Notice how we took the address
of the zero-th element to pass to the planner (we could also have used a typecast).

However, we tend to discourage users from declaring their arrays in this way, for two reasons.
First, this allocates the array on the stack (“automatic” storage), which has a very limited
size on most operating systems (declaring an array with more than a few thousand elements
will often cause a crash). (You can get around this limitation on man1 systems by declaring
the array as static and/or global, but that has its own drawbacks.) Second, it may not
optimally align the array for use with a SIMD FFTW (see Section 3.1.1 [SIMD alignment
and fftw malloc], page 15). Instead, we recommend using fftw_malloc, as described below.

3.2.4 Dynamic Arrays in C

We recommend allocating most arrays dynamically, with fftw_malloc. This isn’t too hard
to do, although it is not as straightforward for multi-dimensional arrays as it is for one-
dimensional arrays.

Creating the array is simple: using a dynamic-allocation routine like fftw_malloc, allocate
an array big enough to store N fftw_complex values (for a complex DFT), where N is the
product of the sizes of the array dimensions (i.e. the total number of complex values in the
array). For example, here is code to allocate a 5× 12× 27 rank-3 array:

fftw_complex *an_array;
an_array = (fftw_complex*) fftw_malloc(5*12*27 * sizeof(fftw_complex));

Accessing the array elements, however, is more tricky—you can’t simply use multiple ap-
plications of the ‘[]’ operator like you could for fixed-size arrays. Instead, you have to
explicitly compute the offset into the array using the formula given earlier for row-major
arrays. For example, to reference the (i, j, k)-th element of the array allocated above, you
would use the expression an_array[k + 27 * (j + 12 * i)].

This pain can be alleviated somewhat by defining appropriate macros, or, in C++, creating
a class and overloading the ‘()’ operator. The recent C99 standard provides a way to
reinterpret the dynamic array as a “variable-length” multi-dimensional array amenable to
‘[]’, but this feature is not yet widely supported by compilers.

3.2.5 Dynamic Arrays in C—The Wrong Way

A different method for allocating multi-dimensional arrays in C is often suggested that is
incompatible with FFTW: using it will cause FFTW to die a painful death. We discuss the
technique here, however, because it is so commonly known and used. This method is to
create arrays of pointers of arrays of pointers of . . . etcetera. For example, the analogue in
this method to the example above is:

18 FFTW 3.2.1

int i,j;
fftw_complex ***a_bad_array; /* another way to make a 5x12x27 array */

a_bad_array = (fftw_complex ***) malloc(5 * sizeof(fftw_complex **));
for (i = 0; i < 5; ++i) {

a_bad_array[i] =
(fftw_complex **) malloc(12 * sizeof(fftw_complex *));

for (j = 0; j < 12; ++j)
a_bad_array[i][j] =

(fftw_complex *) malloc(27 * sizeof(fftw_complex));
}

As you can see, this sort of array is inconvenient to allocate (and deallocate). On the
other hand, it has the advantage that the (i, j, k)-th element can be referenced simply by
a_bad_array[i][j][k].

If you like this technique and want to maximize convenience in accessing the array, but still
want to pass the array to FFTW, you can use a hybrid method. Allocate the array as one
contiguous block, but also declare an array of arrays of pointers that point to appropriate
places in the block. That sort of trick is beyond the scope of this documentation; for more
information on multi-dimensional arrays in C, see the comp.lang.c FAQ.

3.3 Words of Wisdom—Saving Plans

FFTW implements a method for saving plans to disk and restoring them. In fact, what
FFTW does is more general than just saving and loading plans. The mechanism is called
wisdom. Here, we describe this feature at a high level. See Chapter 4 [FFTW Reference],
page 21, for a less casual but more complete discussion of how to use wisdom in FFTW.

Plans created with the FFTW_MEASURE, FFTW_PATIENT, or FFTW_EXHAUSTIVE options produce
near-optimal FFT performance, but may require a long time to compute because FFTW
must measure the runtime of many possible plans and select the best one. This setup is
designed for the situations where so many transforms of the same size must be computed
that the start-up time is irrelevant. For short initialization times, but slower transforms,
we have provided FFTW_ESTIMATE. The wisdom mechanism is a way to get the best of both
worlds: you compute a good plan once, save it to disk, and later reload it as many times as
necessary. The wisdom mechanism can actually save and reload many plans at once, not
just one.

Whenever you create a plan, the FFTW planner accumulates wisdom, which is information
sufficient to reconstruct the plan. After planning, you can save this information to disk by
means of the function:

void fftw_export_wisdom_to_file(FILE *output_file);

The next time you run the program, you can restore the wisdom with fftw_import_wisdom_
from_file (which returns non-zero on success), and then recreate the plan using the same
flags as before.

int fftw_import_wisdom_from_file(FILE *input_file);

Wisdom is automatically used for any size to which it is applicable, as long as the planner
flags are not more “patient” than those with which the wisdom was created. For example,

http://www.eskimo.com/~scs/C-faq/s6.html

Chapter 3: Other Important Topics 19

wisdom created with FFTW_MEASURE can be used if you later plan with FFTW_ESTIMATE or
FFTW_MEASURE, but not with FFTW_PATIENT.

The wisdom is cumulative, and is stored in a global, private data structure managed in-
ternally by FFTW. The storage space required is minimal, proportional to the logarithm
of the sizes the wisdom was generated from. If memory usage is a concern, however, the
wisdom can be forgotten and its associated memory freed by calling:

void fftw_forget_wisdom(void);

Wisdom can be exported to a file, a string, or any other medium. For details, see Section 4.7
[Wisdom], page 38.

3.4 Caveats in Using Wisdom

For in much wisdom is much grief, and he that increaseth knowledge increaseth
sorrow. [Ecclesiastes 1:18]

There are pitfalls to using wisdom, in that it can negate FFTW’s ability to adapt to
changing hardware and other conditions. For example, it would be perfectly possible to
export wisdom from a program running on one processor and import it into a program
running on another processor. Doing so, however, would mean that the second program
would use plans optimized for the first processor, instead of the one it is running on.

It should be safe to reuse wisdom as long as the hardware and program binaries remain
unchanged. (Actually, the optimal plan may change even between runs of the same binary
on identical hardware, due to differences in the virtual memory environment, etcetera. Users
seriously interested in performance should worry about this problem, too.) It is likely that,
if the same wisdom is used for two different program binaries, even running on the same
machine, the plans may be sub-optimal because of differing code alignments. It is therefore
wise to recreate wisdom every time an application is recompiled. The more the underlying
hardware and software changes between the creation of wisdom and its use, the greater
grows the risk of sub-optimal plans.

Nevertheless, if the choice is between using FFTW_ESTIMATE or using possibly-suboptimal
wisdom (created on the same machine, but for a different binary), the wisdom is likely
to be better. For this reason, we provide a function to import wisdom from a standard
system-wide location (/etc/fftw/wisdom on Unix):

int fftw_import_system_wisdom(void);

FFTW also provides a standalone program, fftw-wisdom (described by its own man page
on Unix) with which users can create wisdom, e.g. for a canonical set of sizes to store in
the system wisdom file. See Section 4.7.4 [Wisdom Utilities], page 40.

Chapter 4: FFTW Reference 21

4 FFTW Reference

This chapter provides a complete reference for all sequential (i.e., one-processor) FFTW
functions. Parallel transforms are described in later chapters.

4.1 Data Types and Files

All programs using FFTW should include its header file:

#include <fftw3.h>

You must also link to the FFTW library. On Unix, this means adding -lfftw3 -lm at the
end of the link command.

4.1.1 Complex numbers

The default FFTW interface uses double precision for all floating-point numbers, and de-
fines a fftw_complex type to hold complex numbers as:

typedef double fftw_complex[2];

Here, the [0] element holds the real part and the [1] element holds the imaginary part.

Alternatively, if you have a C compiler (such as gcc) that supports the C99 revision of the
ANSI C standard, you can use C’s new native complex type (which is binary-compatible
with the typedef above). In particular, if you #include <complex.h> before <fftw3.h>,
then fftw_complex is defined to be the native complex type and you can manipulate it
with ordinary arithmetic (e.g. x = y * (3+4*I), where x and y are fftw_complex and I is
the standard symbol for the imaginary unit);

C++ has its own complex<T> template class, defined in the standard <complex> header file.
Reportedly, the C++ standards committee has recently agreed to mandate that the storage
format used for this type be binary-compatible with the C99 type, i.e. an array T[2] with
consecutive real [0] and imaginary [1] parts. (See report WG21/N1388.) Although not
part of the official standard as of this writing, the proposal stated that: “This solution has
been tested with all current major implementations of the standard library and shown to
be working.” To the extent that this is true, if you have a variable complex<double> *x,
you can pass it directly to FFTW via reinterpret_cast<fftw_complex*>(x).

4.1.2 Precision

You can install single and long-double precision versions of FFTW, which replace double
with float and long double, respectively (see Chapter 9 [Installation and Customization],
page 63). To use these interfaces, you:

• Link to the single/long-double libraries; on Unix, -lfftw3f or -lfftw3l instead of (or
in addition to) -lfftw3. (You can link to the different-precision libraries simultane-
ously.)

• Include the same <fftw3.h> header file.
• Replace all lowercase instances of ‘fftw_’ with ‘fftwf_’ or fftwl_ for single

or long-double precision, respectively. (fftw_complex becomes fftwf_complex,
fftw_execute becomes fftwf_execute, etcetera.)

http://anubis.dkuug.dk/JTC1/SC22/WG21/docs/papers/2002/1388.pdf

22 FFTW 3.2.1

• Uppercase names, i.e. names beginning with ‘FFTW_’, remain the same.
• Replace double with float or long double for subroutine parameters.

Depending upon your compiler and/or hardware, long double may not be any more precise
than double (or may not be supported at all, although it is standard in C99).

4.1.3 Memory Allocation

void *fftw_malloc(size_t n);
void fftw_free(void *p);

These are functions that behave identically to malloc and free, except that they guarantee
that the returned pointer obeys any special alignment restrictions imposed by any algorithm
in FFTW (e.g. for SIMD acceleration). See Section 3.1 [Data Alignment], page 15.

Data allocated by fftw_malloc must be deallocated by fftw_free and not by the ordinary
free.

These routines simply call through to your operating system’s malloc or, if necessary, its
aligned equivalent (e.g. memalign), so you normally need not worry about any significant
time or space overhead. You are not required to use them to allocate your data, but we
strongly recommend it.

Note: in C++, just as with ordinary malloc, you must typecast the output of fftw_malloc
to whatever pointer type you are allocating.

4.2 Using Plans

Plans for all transform types in FFTW are stored as type fftw_plan (an opaque pointer
type), and are created by one of the various planning routines described in the follow-
ing sections. An fftw_plan contains all information necessary to compute the transform,
including the pointers to the input and output arrays.

void fftw_execute(const fftw_plan plan);

This executes the plan, to compute the corresponding transform on the arrays for which it
was planned (which must still exist). The plan is not modified, and fftw_execute can be
called as many times as desired.

To apply a given plan to a different array, you can use the new-array execute interface. See
Section 4.6 [New-array Execute Functions], page 37.

fftw_execute (and equivalents) is the only function in FFTW guaranteed to be thread-safe;
see Section 5.4 [Thread safety], page 48.

This function:

void fftw_destroy_plan(fftw_plan plan);

deallocates the plan and all its associated data.

FFTW’s planner saves some other persistent data, such as the accumulated wisdom and
a list of algorithms available in the current configuration. If you want to deallocate all of
that and reset FFTW to the pristine state it was in when you started your program, you
can call:

Chapter 4: FFTW Reference 23

void fftw_cleanup(void);

After calling fftw_cleanup, all existing plans become undefined, and you should not at-
tempt to execute them nor to destroy them. You can however create and execute/destroy
new plans, in which case FFTW starts accumulating wisdom information again.

fftw_cleanup does not deallocate your plans; you should still call fftw_destroy_plan for
this purpose.

The following two routines are provided purely for academic purposes (that is, for enter-
tainment).

void fftw_flops(const fftw_plan plan,
double *add, double *mul, double *fma);

Given a plan, set add, mul, and fma to an exact count of the number of floating-point addi-
tions, multiplications, and fused multiply-add operations involved in the plan’s execution.
The total number of floating-point operations (flops) is add + mul + 2*fma, or add + mul +
fma if the hardware supports fused multiply-add instructions (although the number of FMA
operations is only approximate because of compiler voodoo). (The number of operations
should be an integer, but we use double to avoid overflowing int for large transforms; the
arguments are of type double even for single and long-double precision versions of FFTW.)

void fftw_fprint_plan(const fftw_plan plan, FILE *output_file);
void fftw_print_plan(const fftw_plan plan);

This outputs a “nerd-readable” representation of the plan to the given file or to stdout,
respectively.

4.3 Basic Interface

The basic interface, which we expect to satisfy the needs of most users, provides planner
routines for transforms of a single contiguous array with any of FFTW’s supported transform
types.

4.3.1 Complex DFTs

fftw_plan fftw_plan_dft_1d(int n,
fftw_complex *in, fftw_complex *out,
int sign, unsigned flags);

fftw_plan fftw_plan_dft_2d(int n0, int n1,
fftw_complex *in, fftw_complex *out,
int sign, unsigned flags);

fftw_plan fftw_plan_dft_3d(int n0, int n1, int n2,
fftw_complex *in, fftw_complex *out,
int sign, unsigned flags);

fftw_plan fftw_plan_dft(int rank, const int *n,
fftw_complex *in, fftw_complex *out,
int sign, unsigned flags);

Plan a complex input/output discrete Fourier transform (DFT) in zero or more dimensions,
returning an fftw_plan (see Section 4.2 [Using Plans], page 22).

24 FFTW 3.2.1

Once you have created a plan for a certain transform type and parameters, then creating
another plan of the same type and parameters, but for different arrays, is fast and shares
constant data with the first plan (if it still exists).

The planner returns NULL if the plan cannot be created. A non-NULL plan is always returned
by the basic interface unless you are using a customized FFTW configuration supporting a
restricted set of transforms.

Arguments

• rank is the dimensionality of the transform (it should be the size of the array *n), and
can be any non-negative integer. The ‘_1d’, ‘_2d’, and ‘_3d’ planners correspond to a
rank of 1, 2, and 3, respectively. A rank of zero is equivalent to a transform of size 1,
i.e. a copy of one number from input to output.

• n, or n0/n1/n2, or n[rank], respectively, gives the size of the transform dimensions.
They can be any positive integer.

− Multi-dimensional arrays are stored in row-major order with dimensions: n0 x
n1; or n0 x n1 x n2; or n[0] x n[1] x ... x n[rank-1]. See Section 3.2 [Multi-
dimensional Array Format], page 16.

− FFTW is best at handling sizes of the form 2a3b5c7d11e13f , where e + f is either
0 or 1, and the other exponents are arbitrary. Other sizes are computed by means
of a slow, general-purpose algorithm (which nevertheless retains O(n log n) perfor-
mance even for prime sizes). It is possible to customize FFTW for different array
sizes; see Chapter 9 [Installation and Customization], page 63. Transforms whose
sizes are powers of 2 are especially fast.

• in and out point to the input and output arrays of the transform, which may be the
same (yielding an in-place transform). These arrays are overwritten during planning,
unless FFTW_ESTIMATE is used in the flags. (The arrays need not be initialized, but
they must be allocated.)

If in == out, the transform is in-place and the input array is overwritten. If in != out,
the two arrays must not overlap (but FFTW does not check for this condition).

• sign is the sign of the exponent in the formula that defines the Fourier transform. It
can be −1 (= FFTW_FORWARD) or +1 (= FFTW_BACKWARD).

• flags is a bitwise OR (‘|’) of zero or more planner flags, as defined in Section 4.3.2
[Planner Flags], page 24.

FFTW computes an unnormalized transform: computing a forward followed by a backward
transform (or vice versa) will result in the original data multiplied by the size of the trans-
form (the product of the dimensions). For more information, see Section 4.8 [What FFTW
Really Computes], page 40.

4.3.2 Planner Flags

All of the planner routines in FFTW accept an integer flags argument, which is a bitwise
OR (‘|’) of zero or more of the flag constants defined below. These flags control the rigor
(and time) of the planning process, and can also impose (or lift) restrictions on the type of
transform algorithm that is employed.

Chapter 4: FFTW Reference 25

Important: the planner overwrites the input array during planning unless a saved plan (see
Section 4.7 [Wisdom], page 38) is available for that problem, so you should initialize your
input data after creating the plan. The only exceptions to this are the FFTW_ESTIMATE and
FFTW_WISDOM_ONLY flags, as mentioned below.

In all cases, if wisdom is available for the given problem that was created with equal-or-
greater planning rigor, then it is used instead. For example, in FFTW_ESTIMATE mode any
available wisdom is used, whereas in FFTW_PATIENT mode only wisdom created in patient
or exhaustive mode can be used. See Section 3.3 [Words of Wisdom-Saving Plans], page 18.

Planning-rigor flags

• FFTW_ESTIMATE specifies that, instead of actual measurements of different algorithms,
a simple heuristic is used to pick a (probably sub-optimal) plan quickly. With this flag,
the input/output arrays are not overwritten during planning.

• FFTW_MEASURE tells FFTW to find an optimized plan by actually computing several
FFTs and measuring their execution time. Depending on your machine, this can take
some time (often a few seconds). FFTW_MEASURE is the default planning option.

• FFTW_PATIENT is like FFTW_MEASURE, but considers a wider range of algorithms and
often produces a “more optimal” plan (especially for large transforms), but at the
expense of several times longer planning time (especially for large transforms).

• FFTW_EXHAUSTIVE is like FFTW_PATIENT, but considers an even wider range of algo-
rithms, including many that we think are unlikely to be fast, to produce the most
optimal plan but with a substantially increased planning time.

• FFTW_WISDOM_ONLY is a special planning mode in which the plan is only created if
wisdom is available for the given problem, and otherwise a NULL plan is returned. This
can be combined with other flags, e.g. ‘FFTW_WISDOM_ONLY | FFTW_PATIENT’ creates a
plan only if wisdom is available that was created in FFTW_PATIENT or FFTW_EXHAUSTIVE
mode. The FFTW_WISDOM_ONLY flag is intended for users who need to detect whether
wisdom is available; for example, if wisdom is not available one may wish to allocate
new arrays for planning so that user data is not overwritten.

Algorithm-restriction flags

• FFTW_DESTROY_INPUT specifies that an out-of-place transform is allowed to overwrite
its input array with arbitrary data; this can sometimes allow more efficient algorithms
to be employed.

• FFTW_PRESERVE_INPUT specifies that an out-of-place transform must not change its
input array. This is ordinarily the default, except for c2r and hc2r (i.e. complex-to-real)
transforms for which FFTW_DESTROY_INPUT is the default. In the latter cases, passing
FFTW_PRESERVE_INPUT will attempt to use algorithms that do not destroy the input,
at the expense of worse performance; for multi-dimensional c2r transforms, however,
no input-preserving algorithms are implemented and the planner will return NULL if
one is requested.

• FFTW_UNALIGNED specifies that the algorithm may not impose any unusual alignment
requirements on the input/output arrays (i.e. no SIMD may be used). This flag is
normally not necessary, since the planner automatically detects misaligned arrays. The
only use for this flag is if you want to use the new-array execute interface to execute

26 FFTW 3.2.1

a given plan on a different array that may not be aligned like the original. (Using
fftw_malloc makes this flag unnecessary even then.)

Limiting planning time

extern void fftw_set_timelimit(double seconds);

This function instructs FFTW to spend at most seconds seconds (approximately) in the
planner. If seconds == FFTW_NO_TIMELIMIT (the default value, which is negative), then
planning time is unbounded. Otherwise, FFTW plans with a progressively wider range
of algorithms until the the given time limit is reached or the given range of algorithms is
explored, returning the best available plan.

For example, specifying FFTW_PATIENT first plans in FFTW_ESTIMATE mode, then in FFTW_
MEASURE mode, then finally (time permitting) in FFTW_PATIENT. If FFTW_EXHAUSTIVE is
specified instead, the planner will further progress to FFTW_EXHAUSTIVE mode.

Note that the seconds argument specifies only a rough limit; in practice, the planner may
use somewhat more time if the time limit is reached when the planner is in the middle of an
operation that cannot be interrupted. At the very least, the planner will complete planning
in FFTW_ESTIMATE mode (which is thus equivalent to a time limit of 0).

4.3.3 Real-data DFTs

fftw_plan fftw_plan_dft_r2c_1d(int n,
double *in, fftw_complex *out,
unsigned flags);

fftw_plan fftw_plan_dft_r2c_2d(int n0, int n1,
double *in, fftw_complex *out,
unsigned flags);

fftw_plan fftw_plan_dft_r2c_3d(int n0, int n1, int n2,
double *in, fftw_complex *out,
unsigned flags);

fftw_plan fftw_plan_dft_r2c(int rank, const int *n,
double *in, fftw_complex *out,
unsigned flags);

Plan a real-input/complex-output discrete Fourier transform (DFT) in zero or more dimen-
sions, returning an fftw_plan (see Section 4.2 [Using Plans], page 22).

Once you have created a plan for a certain transform type and parameters, then creating
another plan of the same type and parameters, but for different arrays, is fast and shares
constant data with the first plan (if it still exists).

The planner returns NULL if the plan cannot be created. A non-NULL plan is always returned
by the basic interface unless you are using a customized FFTW configuration supporting
a restricted set of transforms, or if you use the FFTW_PRESERVE_INPUT flag with a multi-
dimensional out-of-place c2r transform (see below).

Arguments

• rank is the dimensionality of the transform (it should be the size of the array *n), and
can be any non-negative integer. The ‘_1d’, ‘_2d’, and ‘_3d’ planners correspond to a

Chapter 4: FFTW Reference 27

rank of 1, 2, and 3, respectively. A rank of zero is equivalent to a transform of size 1,
i.e. a copy of one number (with zero imaginary part) from input to output.

• n, or n0/n1/n2, or n[rank], respectively, gives the size of the logical transform dimen-
sions. They can be any positive integer. This is different in general from the physical
array dimensions, which are described in Section 4.3.4 [Real-data DFT Array Format],
page 28.

− FFTW is best at handling sizes of the form 2a3b5c7d11e13f , where e + f is either
0 or 1, and the other exponents are arbitrary. Other sizes are computed by means
of a slow, general-purpose algorithm (which nevertheless retains O(n log n) perfor-
mance even for prime sizes). (It is possible to customize FFTW for different array
sizes; see Chapter 9 [Installation and Customization], page 63.) Transforms whose
sizes are powers of 2 are especially fast, and it is generally beneficial for the last
dimension of an r2c/c2r transform to be even.

• in and out point to the input and output arrays of the transform, which may be the
same (yielding an in-place transform). These arrays are overwritten during planning,
unless FFTW_ESTIMATE is used in the flags. (The arrays need not be initialized, but
they must be allocated.) For an in-place transform, it is important to remember that
the real array will require padding, described in Section 4.3.4 [Real-data DFT Array
Format], page 28.

• flags is a bitwise OR (‘|’) of zero or more planner flags, as defined in Section 4.3.2
[Planner Flags], page 24.

The inverse transforms, taking complex input (storing the non-redundant half of a logically
Hermitian array) to real output, are given by:

fftw_plan fftw_plan_dft_c2r_1d(int n,
fftw_complex *in, double *out,
unsigned flags);

fftw_plan fftw_plan_dft_c2r_2d(int n0, int n1,
fftw_complex *in, double *out,
unsigned flags);

fftw_plan fftw_plan_dft_c2r_3d(int n0, int n1, int n2,
fftw_complex *in, double *out,
unsigned flags);

fftw_plan fftw_plan_dft_c2r(int rank, const int *n,
fftw_complex *in, double *out,
unsigned flags);

The arguments are the same as for the r2c transforms, except that the input and output
data formats are reversed.

FFTW computes an unnormalized transform: computing an r2c followed by a c2r transform
(or vice versa) will result in the original data multiplied by the size of the transform (the
product of the logical dimensions). An r2c transform produces the same output as a FFTW_
FORWARD complex DFT of the same input, and a c2r transform is correspondingly equivalent
to FFTW_BACKWARD. For more information, see Section 4.8 [What FFTW Really Computes],
page 40.

28 FFTW 3.2.1

4.3.4 Real-data DFT Array Format

The output of a DFT of real data (r2c) contains symmetries that, in principle, make half of
the outputs redundant (see Section 4.8 [What FFTW Really Computes], page 40). (Sim-
ilarly for the input of an inverse c2r transform.) In practice, it is not possible to entirely
realize these savings in an efficient and understandable format that generalizes to multi-
dimensional transforms. Instead, the output of the r2c transforms is slightly over half of
the output of the corresponding complex transform. We do not “pack” the data in any
way, but store it as an ordinary array of fftw_complex values. In fact, this data is simply
a subsection of what would be the array in the corresponding complex transform.

Specifically, for a real transform of d (= rank) dimensions n0 × n1 × n2 × · · · × nd−1 , the
complex data is an n0 × n1 × n2 × · · · × (nd−1/2 + 1) array of fftw_complex values in
row-major order (with the division rounded down). That is, we only store the lower half
(non-negative frequencies), plus one element, of the last dimension of the data from the
ordinary complex transform. (We could have instead taken half of any other dimension,
but implementation turns out to be simpler if the last, contiguous, dimension is used.)

For an out-of-place transform, the real data is simply an array with physical dimensions
n0 × n1 × n2 × · · · × nd−1 in row-major order.

For an in-place transform, some complications arise since the complex data is slightly larger
than the real data. In this case, the final dimension of the real data must be padded with
extra values to accommodate the size of the complex data—two extra if the last dimension
is even and one if it is odd. That is, the last dimension of the real data must physically
contain 2(nd−1/2 + 1) double values (exactly enough to hold the complex data). This
physical array size does not, however, change the logical array size—only nd−1 values are
actually stored in the last dimension, and nd−1 is the last dimension passed to the planner.

4.3.5 Real-to-Real Transforms

fftw_plan fftw_plan_r2r_1d(int n, double *in, double *out,
fftw_r2r_kind kind, unsigned flags);

fftw_plan fftw_plan_r2r_2d(int n0, int n1, double *in, double *out,
fftw_r2r_kind kind0, fftw_r2r_kind kind1,
unsigned flags);

fftw_plan fftw_plan_r2r_3d(int n0, int n1, int n2,
double *in, double *out,
fftw_r2r_kind kind0,
fftw_r2r_kind kind1,
fftw_r2r_kind kind2,
unsigned flags);

fftw_plan fftw_plan_r2r(int rank, const int *n, double *in, double *out,
const fftw_r2r_kind *kind, unsigned flags);

Plan a real input/output (r2r) transform of various kinds in zero or more dimensions,
returning an fftw_plan (see Section 4.2 [Using Plans], page 22).

Once you have created a plan for a certain transform type and parameters, then creating
another plan of the same type and parameters, but for different arrays, is fast and shares
constant data with the first plan (if it still exists).

Chapter 4: FFTW Reference 29

The planner returns NULL if the plan cannot be created. A non-NULL plan is always returned
by the basic interface unless you are using a customized FFTW configuration supporting a
restricted set of transforms, or for size-1 FFTW_REDFT00 kinds (which are not defined).

Arguments

• rank is the dimensionality of the transform (it should be the size of the arrays *n and
*kind), and can be any non-negative integer. The ‘_1d’, ‘_2d’, and ‘_3d’ planners
correspond to a rank of 1, 2, and 3, respectively. A rank of zero is equivalent to a copy
of one number from input to output.

• n, or n0/n1/n2, or n[rank], respectively, gives the (physical) size of the transform
dimensions. They can be any positive integer.

− Multi-dimensional arrays are stored in row-major order with dimensions: n0 x
n1; or n0 x n1 x n2; or n[0] x n[1] x ... x n[rank-1]. See Section 3.2 [Multi-
dimensional Array Format], page 16.

− FFTW is generally best at handling sizes of the form 2a3b5c7d11e13f , where e+f is
either 0 or 1, and the other exponents are arbitrary. Other sizes are computed by
means of a slow, general-purpose algorithm (which nevertheless retains O(n log n)
performance even for prime sizes). (It is possible to customize FFTW for different
array sizes; see Chapter 9 [Installation and Customization], page 63.) Transforms
whose sizes are powers of 2 are especially fast.

− For a REDFT00 or RODFT00 transform kind in a dimension of size n, it is n − 1 or
n + 1, respectively, that should be factorizable in the above form.

• in and out point to the input and output arrays of the transform, which may be the
same (yielding an in-place transform). These arrays are overwritten during planning,
unless FFTW_ESTIMATE is used in the flags. (The arrays need not be initialized, but
they must be allocated.)

• kind, or kind0/kind1/kind2, or kind[rank], is the kind of r2r transform used for
the corresponding dimension. The valid kind constants are described in Section 4.3.6
[Real-to-Real Transform Kinds], page 29. In a multi-dimensional transform, what is
computed is the separable product formed by taking each transform kind along the
corresponding dimension, one dimension after another.

• flags is a bitwise OR (‘|’) of zero or more planner flags, as defined in Section 4.3.2
[Planner Flags], page 24.

4.3.6 Real-to-Real Transform Kinds

FFTW currently supports 11 different r2r transform kinds, specified by one of the constants
below. For the precise definitions of these transforms, see Section 4.8 [What FFTW Really
Computes], page 40. For a more colloquial introduction to these transform kinds, see
Section 2.5 [More DFTs of Real Data], page 10.

For dimension of size n, there is a corresponding “logical” dimension N that determines the
normalization (and the optimal factorization); the formula for N is given for each kind below.
Also, with each transform kind is listed its corrsponding inverse transform. FFTW computes
unnormalized transforms: a transform followed by its inverse will result in the original data
multiplied by N (or the product of the N’s for each dimension, in multi-dimensions).

30 FFTW 3.2.1

• FFTW_R2HC computes a real-input DFT with output in “halfcomplex” format, i.e. real
and imaginary parts for a transform of size n stored as:

r0, r1, r2, . . . , rn/2, i(n+1)/2−1, . . . , i2, i1

(Logical N=n, inverse is FFTW_HC2R.)
• FFTW_HC2R computes the reverse of FFTW_R2HC, above. (Logical N=n, inverse is FFTW_

R2HC.)
• FFTW_DHT computes a discrete Hartley transform. (Logical N=n, inverse is FFTW_DHT.)
• FFTW_REDFT00 computes an REDFT00 transform, i.e. a DCT-I. (Logical N=2*(n-1),

inverse is FFTW_REDFT00.)
• FFTW_REDFT10 computes an REDFT10 transform, i.e. a DCT-II (sometimes called

“the” DCT). (Logical N=2*n, inverse is FFTW_REDFT01.)
• FFTW_REDFT01 computes an REDFT01 transform, i.e. a DCT-III (sometimes called

“the” IDCT, being the inverse of DCT-II). (Logical N=2*n, inverse is FFTW_REDFT=10.)

• FFTW_REDFT11 computes an REDFT11 transform, i.e. a DCT-IV. (Logical N=2*n,
inverse is FFTW_REDFT11.)

• FFTW_RODFT00 computes an RODFT00 transform, i.e. a DST-I. (Logical N=2*(n+1),
inverse is FFTW_RODFT00.)

• FFTW_RODFT10 computes an RODFT10 transform, i.e. a DST-II. (Logical N=2*n, in-
verse is FFTW_RODFT01.)

• FFTW_RODFT01 computes an RODFT01 transform, i.e. a DST-III. (Logical N=2*n, in-
verse is FFTW_RODFT=10.)

• FFTW_RODFT11 computes an RODFT11 transform, i.e. a DST-IV. (Logical N=2*n, in-
verse is FFTW_RODFT11.)

4.4 Advanced Interface

FFTW’s “advanced” interface supplements the basic interface with four new planner rou-
tines, providing a new level of flexibility: you can plan a transform of multiple arrays si-
multaneously, operate on non-contiguous (strided) data, and transform a subset of a larger
multi-dimensional array. Other than these additional features, the planner operates in the
same fashion as in the basic interface, and the resulting fftw_plan is used in the same way
(see Section 4.2 [Using Plans], page 22).

4.4.1 Advanced Complex DFTs

fftw_plan fftw_plan_many_dft(int rank, const int *n, int howmany,
fftw_complex *in, const int *inembed,
int istride, int idist,
fftw_complex *out, const int *onembed,
int ostride, int odist,
int sign, unsigned flags);

This plans multidimensional complex DFTs, and is exactly the same as fftw_plan_dft
except for the new parameters howmany, {i,o}nembed, {i,o}stride, and {i,o}dist.

Chapter 4: FFTW Reference 31

howmany is the number of transforms to compute, where the k-th transform is of the arrays
starting at in+k*idist and out+k*odist. The resulting plans can often be faster than
calling FFTW multiple times for the individual transforms. The basic fftw_plan_dft
interface corresponds to howmany=1 (in which case the dist parameters are ignored).

The two nembed parameters (which should be arrays of length rank) indicate the sizes of
the input and output array dimensions, respectively, where the transform is of a subarray
of size n. (Each dimension of n should be <= the corresponding dimension of the nembed
arrays.) That is, the input and output arrays are stored in row-major order with size given
by nembed (not counting the strides and howmany multiplicities). Passing NULL for an
nembed parameter is equivalent to passing n (i.e. same physical and logical dimensions, as
in the basic interface.)

The stride parameters indicate that the j-th element of the input or output arrays is
located at j*istride or j*ostride, respectively. (For a multi-dimensional array, j is the
ordinary row-major index.) When combined with the k-th transform in a howmany loop,
from above, this means that the (j,k)-th element is at j*stride+k*dist. (The basic fftw_
plan_dft interface corresponds to a stride of 1.)

For in-place transforms, the input and output stride and dist parameters should be the
same; otherwise, the planner may return NULL.

Arrays n, inembed, and onembed are not used after this function returns. You can safely
free or reuse them.

So, for example, to transform a sequence of contiguous arrays, stored one after another, one
would use a stride of 1 and a dist of N , where N is the product of the dimensions. In
another example, to transform an array of contiguous “vectors” of length M , one would use
a howmany of M , a stride of M , and a dist of 1.

4.4.2 Advanced Real-data DFTs

fftw_plan fftw_plan_many_dft_r2c(int rank, const int *n, int howmany,
double *in, const int *inembed,
int istride, int idist,
fftw_complex *out, const int *onembed,
int ostride, int odist,
unsigned flags);

fftw_plan fftw_plan_many_dft_c2r(int rank, const int *n, int howmany,
fftw_complex *in, const int *inembed,
int istride, int idist,
double *out, const int *onembed,
int ostride, int odist,
unsigned flags);

Like fftw_plan_many_dft, these two functions add howmany, nembed, stride, and dist
parameters to the fftw_plan_dft_r2c and fftw_plan_dft_c2r functions, but otherwise
behave the same as the basic interface.

The interpretation of howmany, stride, and dist are the same as for fftw_plan_many_dft,
above. Note that the stride and dist for the real array are in units of double, and for
the complex array are in units of fftw_complex.

32 FFTW 3.2.1

If an nembed parameter is NULL, it is interpreted as what it would be in the basic interface, as
described in Section 4.3.4 [Real-data DFT Array Format], page 28. That is, for the complex
array the size is assumed to be the same as n, but with the last dimension cut roughly in
half. For the real array, the size is assumed to be n if the transform is out-of-place, or n
with the last dimension “padded” if the transform is in-place.

If an nembed parameter is non-NULL, it is interpreted as the physical size of the corresponding
array, in row-major order, just as for fftw_plan_many_dft. In this case, each dimension of
nembed should be >= what it would be in the basic interface (e.g. the halved or padded n).

Arrays n, inembed, and onembed are not used after this function returns. You can safely
free or reuse them.

4.4.3 Advanced Real-to-real Transforms

fftw_plan fftw_plan_many_r2r(int rank, const int *n, int howmany,
double *in, const int *inembed,
int istride, int idist,
double *out, const int *onembed,
int ostride, int odist,
const fftw_r2r_kind *kind, unsigned flags);

Like fftw_plan_many_dft, this functions adds howmany, nembed, stride, and dist param-
eters to the fftw_plan_r2r function, but otherwise behave the same as the basic interface.
The interpretation of those additional parameters are the same as for fftw_plan_many_dft.
(Of course, the stride and dist parameters are now in units of double, not fftw_complex.)

Arrays n, inembed, onembed, and kind are not used after this function returns. You can
safely free or reuse them.

4.5 Guru Interface

The “guru” interface to FFTW is intended to expose as much as possible of the flexibility in
the underlying FFTW architecture. It allows one to compute multi-dimensional “vectors”
(loops) of multi-dimensional transforms, where each vector/transform dimension has an
independent size and stride. One can also use more general complex-number formats, e.g.
separate real and imaginary arrays.

For those users who require the flexibility of the guru interface, it is important that they
pay special attention to the documentation lest they shoot themselves in the foot.

4.5.1 Interleaved and split arrays

The guru interface supports two representations of complex numbers, which we call the
interleaved and the split format.

The interleaved format is the same one used by the basic and advanced interfaces, and it
is documented in Section 4.1.1 [Complex numbers], page 21. In the interleaved format, you
provide pointers to the real part of a complex number, and the imaginary part understood
to be stored in the next memory location.

The split format allows separate pointers to the real and imaginary parts of a complex
array.

Chapter 4: FFTW Reference 33

Technically, the interleaved format is redundant, because you can always express an inter-
leaved array in terms of a split array with appropriate pointers and strides. On the other
hand, the interleaved format is simpler to use, and it is common in practice. Hence, FFTW
supports it as a special case.

4.5.2 Guru vector and transform sizes

The guru interface introduces one basic new data structure, fftw_iodim, that is used to
specify sizes and strides for multi-dimensional transforms and vectors:

typedef struct {
int n;
int is;
int os;

} fftw_iodim;

Here, n is the size of the dimension, and is and os are the strides of that dimension for the
input and output arrays. (The stride is the separation of consecutive elements along this
dimension.)

The meaning of the stride parameter depends on the type of the array that the stride refers
to. If the array is interleaved complex, strides are expressed in units of complex numbers
(fftw_complex). If the array is split complex or real, strides are expressed in units of real
numbers (double). This convention is consistent with the usual pointer arithmetic in the
C language. An interleaved array is denoted by a pointer p to fftw_complex, so that p+1
points to the next complex number. Split arrays are denoted by pointers to double, in
which case pointer arithmetic operates in units of sizeof(double).

The guru planner interfaces all take a (rank, dims[rank]) pair describing the transform
size, and a (howmany_rank, howmany_dims[howmany_rank]) pair describing the “vector”
size (a multi-dimensional loop of transforms to perform), where dims and howmany_dims
are arrays of fftw_iodim.

For example, the howmany parameter in the advanced complex-DFT interface corresponds
to howmany_rank = 1, howmany_dims[0].n = howmany, howmany_dims[0].is = idist,
and howmany_dims[0].os = odist. (To compute a single transform, you can just use
howmany_rank = 0.)

A row-major multidimensional array with dimensions n[rank] (see Section 3.2.1 [Row-
major Format], page 16) corresponds to dims[i].n = n[i] and the recurrence dims[i].is
= n[i+1] * dims[i+1].is (similarly for os). The stride of the last (i=rank-1) dimension is
the overall stride of the array. e.g. to be equivalent to the advanced complex-DFT interface,
you would have dims[rank-1].is = istride and dims[rank-1].os = ostride.

In general, we only guarantee FFTW to return a non-NULL plan if the vector and trans-
form dimensions correspond to a set of distinct indices, and for in-place transforms the
input/output strides should be the same.

4.5.3 Guru Complex DFTs

fftw_plan fftw_plan_guru_dft(
int rank, const fftw_iodim *dims,
int howmany_rank, const fftw_iodim *howmany_dims,

34 FFTW 3.2.1

fftw_complex *in, fftw_complex *out,
int sign, unsigned flags);

fftw_plan fftw_plan_guru_split_dft(
int rank, const fftw_iodim *dims,
int howmany_rank, const fftw_iodim *howmany_dims,
double *ri, double *ii, double *ro, double *io,
unsigned flags);

These two functions plan a complex-data, multi-dimensional DFT for the interleaved
and split format, respectively. Transform dimensions are given by (rank, dims) over a
multi-dimensional vector (loop) of dimensions (howmany_rank, howmany_dims). dims and
howmany_dims should point to fftw_iodim arrays of length rank and howmany_rank,
respectively.

flags is a bitwise OR (‘|’) of zero or more planner flags, as defined in Section 4.3.2 [Planner
Flags], page 24.

In the fftw_plan_guru_dft function, the pointers in and out point to the interleaved
input and output arrays, respectively. The sign can be either −1 (= FFTW_FORWARD) or +1
(= FFTW_BACKWARD). If the pointers are equal, the transform is in-place.

In the fftw_plan_guru_split_dft function, ri and ii point to the real and imaginary
input arrays, and ro and io point to the real and imaginary output arrays. The input
and output pointers may be the same, indicating an in-place transform. For example, for
fftw_complex pointers in and out, the corresponding parameters are:

ri = (double *) in;
ii = (double *) in + 1;
ro = (double *) out;
io = (double *) out + 1;

Because fftw_plan_guru_split_dft accepts split arrays, strides are expressed in units of
double. For a contiguous fftw_complex array, the overall stride of the transform should be
2, the distance between consecutive real parts or between consecutive imaginary parts; see
Section 4.5.2 [Guru vector and transform sizes], page 33. Note that the dimension strides
are applied equally to the real and imaginary parts; real and imaginary arrays with different
strides are not supported.

There is no sign parameter in fftw_plan_guru_split_dft. This function always plans
for an FFTW_FORWARD transform. To plan for an FFTW_BACKWARD transform, you can exploit
the identity that the backwards DFT is equal to the forwards DFT with the real and
imaginary parts swapped. For example, in the case of the fftw_complex arrays above, the
FFTW_BACKWARD transform is computed by the parameters:

ri = (double *) in + 1;
ii = (double *) in;
ro = (double *) out + 1;
io = (double *) out;

4.5.4 Guru Real-data DFTs

fftw_plan fftw_plan_guru_dft_r2c(

Chapter 4: FFTW Reference 35

int rank, const fftw_iodim *dims,
int howmany_rank, const fftw_iodim *howmany_dims,
double *in, fftw_complex *out,
unsigned flags);

fftw_plan fftw_plan_guru_split_dft_r2c(
int rank, const fftw_iodim *dims,
int howmany_rank, const fftw_iodim *howmany_dims,
double *in, double *ro, double *io,
unsigned flags);

fftw_plan fftw_plan_guru_dft_c2r(
int rank, const fftw_iodim *dims,
int howmany_rank, const fftw_iodim *howmany_dims,
fftw_complex *in, double *out,
unsigned flags);

fftw_plan fftw_plan_guru_split_dft_c2r(
int rank, const fftw_iodim *dims,
int howmany_rank, const fftw_iodim *howmany_dims,
double *ri, double *ii, double *out,
unsigned flags);

Plan a real-input (r2c) or real-output (c2r), multi-dimensional DFT with transform dimen-
sions given by (rank, dims) over a multi-dimensional vector (loop) of dimensions (howmany_
rank, howmany_dims). dims and howmany_dims should point to fftw_iodim arrays of length
rank and howmany_rank, respectively. As for the basic and advanced interfaces, an r2c
transform is FFTW_FORWARD and a c2r transform is FFTW_BACKWARD.

The last dimension of dims is interpreted specially: that dimension of the real array has size
dims[rank-1].n, but that dimension of the complex array has size dims[rank-1].n/2+1
(division rounded down). The strides, on the other hand, are taken to be exactly as specified.
It is up to the user to specify the strides appropriately for the peculiar dimensions of the
data, and we do not guarantee that the planner will succeed (return non-NULL) for any
dimensions other than those described in Section 4.3.4 [Real-data DFT Array Format],
page 28 and generalized in Section 4.4.2 [Advanced Real-data DFTs], page 31. (That is, for
an in-place transform, each individual dimension should be able to operate in place.)

in and out point to the input and output arrays for r2c and c2r transforms, respectively.
For split arrays, ri and ii point to the real and imaginary input arrays for a c2r transform,
and ro and io point to the real and imaginary output arrays for an r2c transform. in and
ro or ri and out may be the same, indicating an in-place transform. (In-place transforms
where in and io or ii and out are the same are not currently supported.)

flags is a bitwise OR (‘|’) of zero or more planner flags, as defined in Section 4.3.2 [Planner
Flags], page 24.

In-place transforms of rank greater than 1 are currently only supported for interleaved
arrays. For split arrays, the planner will return NULL.

36 FFTW 3.2.1

4.5.5 Guru Real-to-real Transforms

fftw_plan fftw_plan_guru_r2r(int rank, const fftw_iodim *dims,
int howmany_rank,
const fftw_iodim *howmany_dims,
double *in, double *out,
const fftw_r2r_kind *kind,
unsigned flags);

Plan a real-to-real (r2r) multi-dimensional FFTW_FORWARD transform with transform dimen-
sions given by (rank, dims) over a multi-dimensional vector (loop) of dimensions (howmany_
rank, howmany_dims). dims and howmany_dims should point to fftw_iodim arrays of length
rank and howmany_rank, respectively.

The transform kind of each dimension is given by the kind parameter, which should point
to an array of length rank. Valid fftw_r2r_kind constants are given in Section 4.3.6
[Real-to-Real Transform Kinds], page 29.

in and out point to the real input and output arrays; they may be the same, indicating an
in-place transform.

flags is a bitwise OR (‘|’) of zero or more planner flags, as defined in Section 4.3.2 [Planner
Flags], page 24.

4.5.6 64-bit Guru Interface

When compiled in 64-bit mode on a 64-bit architecture (where addresses are 64 bits wide),
FFTW uses 64-bit quantities internally for all transform sizes, strides, and so on—you don’t
have to do anything special to exploit this. However, in the ordinary FFTW interfaces, you
specify the transform size by an int quantity, which is normally only 32 bits wide. This
means that, even though FFTW is using 64-bit sizes internally, you cannot specify a single
transform dimension larger than 231− 1 numbers.

We expect that few users will require transforms larger than this, but, for those who do,
we provide a 64-bit version of the guru interface in which all sizes are specified as integers
of type ptrdiff_t instead of int. (ptrdiff_t is a signed integer type defined by the C
standard to be wide enough to represent address differences, and thus must be at least
64 bits wide on a 64-bit machine.) We stress that there is no performance advantage to
using this interface—the same internal FFTW code is employed regardless—and it is only
necessary if you want to specify very large transform sizes.

In particular, the 64-bit guru interface is a set of planner routines that are exactly the
same as the guru planner routines, except that they are named with ‘guru64’ instead of
‘guru’ and they take arguments of type fftw_iodim64 instead of fftw_iodim. For example,
instead of fftw_plan_guru_dft, we have fftw_plan_guru64_dft.

fftw_plan fftw_plan_guru64_dft(
int rank, const fftw_iodim64 *dims,
int howmany_rank, const fftw_iodim64 *howmany_dims,
fftw_complex *in, fftw_complex *out,
int sign, unsigned flags);

The fftw_iodim64 type is similar to fftw_iodim, with the same interpretation, except that
it uses type ptrdiff_t instead of type int.

Chapter 4: FFTW Reference 37

typedef struct {
ptrdiff_t n;
ptrdiff_t is;
ptrdiff_t os;

} fftw_iodim64;

Every other ‘fftw_plan_guru’ function also has a ‘fftw_plan_guru64’ equivalent, but we
do not repeat their documentation here since they are identical to the 32-bit versions except
as noted above.

4.6 New-array Execute Functions

Normally, one executes a plan for the arrays with which the plan was created, by calling
fftw_execute(plan) as described in Section 4.2 [Using Plans], page 22. However, it is
possible for sophisticated users to apply a given plan to a different array using the “new-
array execute” functions detailed below, provided that the following conditions are met:

• The array size, strides, etcetera are the same (since those are set by the plan).
• The input and output arrays are the same (in-place) or different (out-of-place) if the

plan was originally created to be in-place or out-of-place, respectively.
• For split arrays, the separations between the real and imaginary parts, ii-ri and io-

ro, are the same as they were for the input and output arrays when the plan was
created. (This condition is automatically satisfied for interleaved arrays.)

• The alignment of the new input/output arrays is the same as that of the input/output
arrays when the plan was created, unless the plan was created with the FFTW_UNALIGNED
flag. Here, the alignment is a platform-dependent quantity (for example, it is the ad-
dress modulo 16 if SSE SIMD instructions are used, but the address modulo 4 for
non-SIMD single-precision FFTW on the same machine). In general, only arrays allo-
cated with fftw_malloc are guaranteed to be equally aligned (see Section 3.1.1 [SIMD
alignment and fftw malloc], page 15).

The alignment issue is especially critical, because if you don’t use fftw_malloc then you
may have little control over the alignment of arrays in memory. For example, neither the
C++ new function nor the Fortran allocate statement provide strong enough guarantees
about data alignment. If you don’t use fftw_malloc, therefore, you probably have to use
FFTW_UNALIGNED (which disables most SIMD support). If possible, it is probably better for
you to simply create multiple plans (creating a new plan is quick once one exists for a given
size), or better yet re-use the same array for your transforms.

If you are tempted to use the new-array execute interface because you want to transform a
known bunch of arrays of the same size, you should probably go use the advanced interface
instead (see Section 4.4 [Advanced Interface], page 30)).

The new-array execute functions are:

void fftw_execute_dft(
const fftw_plan p,
fftw_complex *in, fftw_complex *out);

void fftw_execute_split_dft(

38 FFTW 3.2.1

const fftw_plan p,
double *ri, double *ii, double *ro, double *io);

void fftw_execute_dft_r2c(
const fftw_plan p,
double *in, fftw_complex *out);

void fftw_execute_split_dft_r2c(
const fftw_plan p,
double *in, double *ro, double *io);

void fftw_execute_dft_c2r(
const fftw_plan p,
fftw_complex *in, double *out);

void fftw_execute_split_dft_c2r(
const fftw_plan p,
double *ri, double *ii, double *out);

void fftw_execute_r2r(
const fftw_plan p,
double *in, double *out);

These execute the plan to compute the corresponding transform on the input/output arrays
specified by the subsequent arguments. The input/output array arguments have the same
meanings as the ones passed to the guru planner routines in the preceding sections. The plan
is not modified, and these routines can be called as many times as desired, or intermixed
with calls to the ordinary fftw_execute.

The plan must have been created for the transform type corresponding to the execute
function, e.g. it must be a complex-DFT plan for fftw_execute_dft. Any of the planner
routines for that transform type, from the basic to the guru interface, could have been used
to create the plan, however.

4.7 Wisdom

This section documents the FFTW mechanism for saving and restoring plans from disk.
This mechanism is called wisdom.

4.7.1 Wisdom Export

void fftw_export_wisdom_to_file(FILE *output_file);
char *fftw_export_wisdom_to_string(void);
void fftw_export_wisdom(void (*write_char)(char c, void *), void *data);

These functions allow you to export all currently accumulated wisdom in a form from
which it can be later imported and restored, even during a separate run of the program.
(See Section 3.3 [Words of Wisdom-Saving Plans], page 18.) The current store of wisdom
is not affected by calling any of these routines.

Chapter 4: FFTW Reference 39

fftw_export_wisdom exports the wisdom to any output medium, as specified by the call-
back function write_char. write_char is a putc-like function that writes the character c
to some output; its second parameter is the data pointer passed to fftw_export_wisdom.
For convenience, the following two “wrapper” routines are provided:

fftw_export_wisdom_to_file writes the wisdom to the current position in output_file,
which should be open with write permission. Upon exit, the file remains open and is
positioned at the end of the wisdom data.

fftw_export_wisdom_to_string returns a pointer to a NULL-terminated string holding the
wisdom data. This string is dynamically allocated, and it is the responsibility of the caller
to deallocate it with free when it is no longer needed.

All of these routines export the wisdom in the same format, which we will not document
here except to say that it is LISP-like ASCII text that is insensitive to white space.

4.7.2 Wisdom Import

int fftw_import_system_wisdom(void);
int fftw_import_wisdom_from_file(FILE *input_file);
int fftw_import_wisdom_from_string(const char *input_string);
int fftw_import_wisdom(int (*read_char)(void *), void *data);

These functions import wisdom into a program from data stored by the fftw_export_
wisdom functions above. (See Section 3.3 [Words of Wisdom-Saving Plans], page 18.) The
imported wisdom replaces any wisdom already accumulated by the running program.

fftw_import_wisdom imports wisdom from any input medium, as specified by the callback
function read_char. read_char is a getc-like function that returns the next character
in the input; its parameter is the data pointer passed to fftw_import_wisdom. If the
end of the input data is reached (which should never happen for valid data), read_char
should return EOF (as defined in <stdio.h>). For convenience, the following two “wrapper”
routines are provided:

fftw_import_wisdom_from_file reads wisdom from the current position in input_file,
which should be open with read permission. Upon exit, the file remains open, but the
position of the read pointer is unspecified.

fftw_import_wisdom_from_string reads wisdom from the NULL-terminated string input_
string.

fftw_import_system_wisdom reads wisdom from an implementation-defined standard file
(/etc/fftw/wisdom on Unix and GNU systems).

The return value of these import routines is 1 if the wisdom was read successfully and 0
otherwise. Note that, in all of these functions, any data in the input stream past the end
of the wisdom data is simply ignored.

4.7.3 Forgetting Wisdom

void fftw_forget_wisdom(void);

Calling fftw_forget_wisdom causes all accumulated wisdom to be discarded and its asso-
ciated memory to be freed. (New wisdom can still be gathered subsequently, however.)

40 FFTW 3.2.1

4.7.4 Wisdom Utilities

FFTW includes two standalone utility programs that deal with wisdom. We merely sum-
marize them here, since they come with their own man pages for Unix and GNU systems
(with HTML versions on our web site).

The first program is fftw-wisdom (or fftwf-wisdom in single precision, etcetera), which
can be used to create a wisdom file containing plans for any of the transform sizes and types
supported by FFTW. It is preferable to create wisdom directly from your executable (see
Section 3.4 [Caveats in Using Wisdom], page 19), but this program is useful for creating
global wisdom files for fftw_import_system_wisdom.

The second program is fftw-wisdom-to-conf, which takes a wisdom file as input and
produces a configuration routine as output. The latter is a C subroutine that you can
compile and link into your program, replacing a routine of the same name in the FFTW
library, that determines which parts of FFTW are callable by your program. fftw-wisdom-
to-conf produces a configuration routine that links to only those parts of FFTW needed
by the saved plans in the wisdom, greatly reducing the size of statically linked executables
(which should only attempt to create plans corresponding to those in the wisdom, however).

4.8 What FFTW Really Computes

In this section, we provide precise mathematical definitions for the transforms that FFTW
computes. These transform definitions are fairly standard, but some authors follow slightly
different conventions for the normalization of the transform (the constant factor in front)
and the sign of the complex exponent. We begin by presenting the one-dimensional (1d)
transform definitions, and then give the straightforward extension to multi-dimensional
transforms.

4.8.1 The 1d Discrete Fourier Transform (DFT)

The forward (FFTW_FORWARD) discrete Fourier transform (DFT) of a 1d complex array X of
size n computes an array Y , where:

Yk =
n−1∑
j=0

Xje
−2πjk

√
−1/n .

The backward (FFTW_BACKWARD) DFT computes:

Yk =
n−1∑
j=0

Xje
2πjk

√
−1/n .

FFTW computes an unnormalized transform, in that there is no coefficient in front of
the summation in the DFT. In other words, applying the forward and then the backward
transform will multiply the input by n.

From above, an FFTW_FORWARD transform corresponds to a sign of −1 in the exponent of
the DFT. Note also that we use the standard “in-order” output ordering—the k-th output
corresponds to the frequency k/n (or k/T , where T is your total sampling period). For

Chapter 4: FFTW Reference 41

those who like to think in terms of positive and negative frequencies, this means that the
positive frequencies are stored in the first half of the output and the negative frequencies
are stored in backwards order in the second half of the output. (The frequency −k/n is the
same as the frequency (n− k)/n.)

4.8.2 The 1d Real-data DFT

The real-input (r2c) DFT in FFTW computes the forward transform Y of the size n real
array X, exactly as defined above, i.e.

Yk =
n−1∑
j=0

Xje
−2πjk

√
−1/n .

This output array Y can easily be shown to possess the “Hermitian” symmetry Yk = Y ∗
n−k,

where we take Y to be periodic so that Yn = Y0.

As a result of this symmetry, half of the output Y is redundant (being the complex conjugate
of the other half), and so the 1d r2c transforms only output elements 0. . .n/2 of Y (n/2+1
complex numbers), where the division by 2 is rounded down.

Moreover, the Hermitian symmetry implies that Y0 and, if n is even, the Yn/2 element, are
purely real. So, for the R2HC r2r transform, these elements are not stored in the halfcomplex
output format.

The c2r and H2RC r2r transforms compute the backward DFT of the complex array X
with Hermitian symmetry, stored in the r2c/R2HC output formats, respectively, where the
backward transform is defined exactly as for the complex case:

Yk =
n−1∑
j=0

Xje
2πjk

√
−1/n .

The outputs Y of this transform can easily be seen to be purely real, and are stored as an
array of real numbers.

Like FFTW’s complex DFT, these transforms are unnormalized. In other words, apply-
ing the real-to-complex (forward) and then the complex-to-real (backward) transform will
multiply the input by n.

4.8.3 1d Real-even DFTs (DCTs)

The Real-even symmetry DFTs in FFTW are exactly equivalent to the unnormalized for-
ward (and backward) DFTs as defined above, where the input array X of length N is
purely real and is also even symmetry. In this case, the output array is likewise real and
even symmetry.

For the case of REDFT00, this even symmetry means that Xj = XN−j, where we take X to
be periodic so that XN = X0. Because of this redundancy, only the first n real numbers
are actually stored, where N = 2(n− 1).

The proper definition of even symmetry for REDFT10, REDFT01, and REDFT11 transforms is
somewhat more intricate because of the shifts by 1/2 of the input and/or output, although
the corresponding boundary conditions are given in Section 2.5.2 [Real even/odd DFTs

42 FFTW 3.2.1

(cosine/sine transforms)], page 11. Because of the even symmetry, however, the sine terms
in the DFT all cancel and the remaining cosine terms are written explicitly below. This
formulation often leads people to call such a transform a discrete cosine transform (DCT),
although it is really just a special case of the DFT.

In each of the definitions below, we transform a real array X of length n to a real array Y
of length n:

REDFT00 (DCT-I)

An REDFT00 transform (type-I DCT) in FFTW is defined by:

Yk = X0 + (−1)kXn−1 + 2
n−2∑
j=1

Xj cos[πjk/(n− 1)].

Note that this transform is not defined for n = 1. For n = 2, the summation term above is
dropped as you might expect.

REDFT10 (DCT-II)

An REDFT10 transform (type-II DCT, sometimes called “the” DCT) in FFTW is defined
by:

Yk = 2
n−1∑
j=0

Xj cos[π(j + 1/2)k/n].

REDFT01 (DCT-III)

An REDFT01 transform (type-III DCT) in FFTW is defined by:

Yk = X0 + 2
n−1∑
j=1

Xj cos[πj(k + 1/2)/n].

In the case of n = 1, this reduces to Y0 = X0. Up to a scale factor (see below), this is the
inverse of REDFT10 (“the” DCT), and so the REDFT01 (DCT-III) is sometimes called the
“IDCT”.

REDFT11 (DCT-IV)

An REDFT11 transform (type-IV DCT) in FFTW is defined by:

Yk = 2
n−1∑
j=0

Xj cos[π(j + 1/2)(k + 1/2)/n].

Inverses and Normalization

These definitions correspond directly to the unnormalized DFTs used elsewhere in FFTW
(hence the factors of 2 in front of the summations). The unnormalized inverse of REDFT00
is REDFT00, of REDFT10 is REDFT01 and vice versa, and of REDFT11 is REDFT11. Each
unnormalized inverse results in the original array multiplied by N , where N is the logical
DFT size. For REDFT00, N = 2(n− 1) (note that n = 1 is not defined); otherwise, N = 2n.

Chapter 4: FFTW Reference 43

In defining the discrete cosine transform, some authors also include additional factors of
√

2
(or its inverse) multiplying selected inputs and/or outputs. This is a mostly cosmetic change
that makes the transform orthogonal, but sacrifices the direct equivalence to a symmetric
DFT.

4.8.4 1d Real-odd DFTs (DSTs)

The Real-odd symmetry DFTs in FFTW are exactly equivalent to the unnormalized forward
(and backward) DFTs as defined above, where the input array X of length N is purely real
and is also odd symmetry. In this case, the output is odd symmetry and purely imaginary.

For the case of RODFT00, this odd symmetry means that Xj = −XN−j, where we take X
to be periodic so that XN = X0. Because of this redundancy, only the first n real numbers
starting at j = 1 are actually stored (the j = 0 element is zero), where N = 2(n + 1).

The proper definition of odd symmetry for RODFT10, RODFT01, and RODFT11 transforms is
somewhat more intricate because of the shifts by 1/2 of the input and/or output, although
the corresponding boundary conditions are given in Section 2.5.2 [Real even/odd DFTs
(cosine/sine transforms)], page 11. Because of the odd symmetry, however, the cosine
terms in the DFT all cancel and the remaining sine terms are written explicitly below. This
formulation often leads people to call such a transform a discrete sine transform (DST),
although it is really just a special case of the DFT.

In each of the definitions below, we transform a real array X of length n to a real array Y
of length n:

RODFT00 (DST-I)

An RODFT00 transform (type-I DST) in FFTW is defined by:

Yk = 2
n−1∑
j=0

Xj sin[π(j + 1)(k + 1)/(n + 1)].

RODFT10 (DST-II)

An RODFT10 transform (type-II DST) in FFTW is defined by:

Yk = 2
n−1∑
j=0

Xj sin[π(j + 1/2)(k + 1)/n].

RODFT01 (DST-III)

An RODFT01 transform (type-III DST) in FFTW is defined by:

Yk = (−1)kXn−1 + 2
n−2∑
j=0

Xj sin[π(j + 1)(k + 1/2)/n].

In the case of n = 1, this reduces to Y0 = X0.

44 FFTW 3.2.1

RODFT11 (DST-IV)

An RODFT11 transform (type-IV DST) in FFTW is defined by:

Yk = 2
n−1∑
j=0

Xj sin[π(j + 1/2)(k + 1/2)/n].

Inverses and Normalization

These definitions correspond directly to the unnormalized DFTs used elsewhere in FFTW
(hence the factors of 2 in front of the summations). The unnormalized inverse of RODFT00
is RODFT00, of RODFT10 is RODFT01 and vice versa, and of RODFT11 is RODFT11. Each
unnormalized inverse results in the original array multiplied by N , where N is the logical
DFT size. For RODFT00, N = 2(n + 1); otherwise, N = 2n.

In defining the discrete sine transform, some authors also include additional factors of√
2 (or its inverse) multiplying selected inputs and/or outputs. This is a mostly cosmetic

change that makes the transform orthogonal, but sacrifices the direct equivalence to an
antisymmetric DFT.

4.8.5 1d Discrete Hartley Transforms (DHTs)

The discrete Hartley transform (DHT) of a 1d real array X of size n computes a real array
Y of the same size, where:

Yk =
n−1∑
j=0

Xj[cos(2πjk/n) + sin(2πjk/n)].

FFTW computes an unnormalized transform, in that there is no coefficient in front of the
summation in the DHT. In other words, applying the transform twice (the DHT is its own
inverse) will multiply the input by n.

4.8.6 Multi-dimensional Transforms

The multi-dimensional transforms of FFTW, in general, compute simply the separable
product of the given 1d transform along each dimension of the array. Since each of these
transforms is unnormalized, computing the forward followed by the backward/inverse multi-
dimensional transform will result in the original array scaled by the product of the normal-
ization factors for each dimension (e.g. the product of the dimension sizes, for a multi-
dimensional DFT).

As an explicit example, consider the following exact mathematical definition of our
multi-dimensional DFT. Let X be a d-dimensional complex array whose elements are
X[j1, j2, . . . , jd], where 0 ≤ js < ns for all s ∈ {1, 2, . . . , d}. Let also ωs = e2π

√
−1/ns , for all

s ∈ {1, 2, . . . , d}.
The forward transform computes a complex array Y , whose structure is the same as that
of X, defined by

Y [k1, k2, . . . , kd] =
n1−1∑
j1=0

n2−1∑
j2=0

· · ·
nd−1∑
jd=0

X[j1, j2, . . . , jd]ω
−j1k1
1 ω−j2k2

2 · · ·ω−jdkd

d .

Chapter 4: FFTW Reference 45

The backward transform computes

Y [k1, k2, . . . , kd] =
n1−1∑
j1=0

n2−1∑
j2=0

· · ·
nd−1∑
jd=0

X[j1, j2, . . . , jd]ω
j1k1
1 ωj2k2

2 · · ·ωjdkd

d .

Computing the forward transform followed by the backward transform will multiply the
array by

∏d
s=1 nd.

The definition of FFTW’s multi-dimensional DFT of real data (r2c) deserves special at-
tention. In this case, we logically compute the full multi-dimensional DFT of the input
data; since the input data are purely real, the output data have the Hermitian symme-
try and therefore only one non-redundant half need be stored. More specifically, for an
n0 × n1 × n2 × · · · × nd−1 multi-dimensional real-input DFT, the full (logical) complex
output array Y [k0, k1, . . . , kd−1] has the symmetry:

Y [k0, k1, . . . , kd−1] = Y [n0 − k0, n1 − k1, . . . , nd−1 − kd−1]∗

(where each dimension is periodic). Because of this symmetry, we only store the kd−1 =
0 · · ·nd−1/2 elements of the last dimension (division by 2 is rounded down). (We could
instead have cut any other dimension in half, but the last dimension proved computation-
ally convenient.) This results in the peculiar array format described in more detail by
Section 4.3.4 [Real-data DFT Array Format], page 28.

The multi-dimensional c2r transform is simply the unnormalized inverse of the r2c trans-
form. i.e. it is the same as FFTW’s complex backward multi-dimensional DFT, operating
on a Hermitian input array in the peculiar format mentioned above and outputting a real
array (since the DFT output is purely real).

We should remind the user that the separable product of 1d transforms along each dimen-
sion, as computed by FFTW, is not always the same thing as the usual multi-dimensional
transform. A multi-dimensional R2HC (or HC2R) transform is not identical to the multi-
dimensional DFT, requiring some post-processing to combine the requisite real and imag-
inary parts, as was described in Section 2.5.1 [The Halfcomplex-format DFT], page 11.
Likewise, FFTW’s multidimensional FFTW_DHT r2r transform is not the same thing as the
logical multi-dimensional discrete Hartley transform defined in the literature, as discussed
in Section 2.5.3 [The Discrete Hartley Transform], page 13.

Chapter 5: Multi-threaded FFTW 47

5 Multi-threaded FFTW

In this chapter we document the parallel FFTW routines for shared-memory parallel hard-
ware. These routines, which support parallel one- and multi-dimensional transforms of both
real and complex data, are the easiest way to take advantage of multiple processors with
FFTW. They work just like the corresponding uniprocessor transform routines, except that
you have an extra initialization routine to call, and there is a routine to set the number
of threads to employ. Any program that uses the uniprocessor FFTW can therefore be
trivially modified to use the multi-threaded FFTW.

A shared-memory machine is one in which all CPUs can directly access the same main mem-
ory, and such machines are now common due to the ubiquity of multi-core CPUs. FFTW’s
multi-threading support allows you to utilize these additional CPUs transparently from a
single program. However, this does not necessarily translate into performance gains—when
multiple threads/CPUs are employed, there is an overhead required for synchronization
that may outweigh the computatational parallelism. Therefore, you can only benefit from
threads if your problem is sufficiently large.

5.1 Installation and Supported Hardware/Software

All of the FFTW threads code is located in the threads subdirectory of the FFTW pack-
age. On Unix systems, the FFTW threads libraries and header files can be automatically
configured, compiled, and installed along with the uniprocessor FFTW libraries simply by
including --enable-threads in the flags to the configure script (see Section 9.1 [Instal-
lation on Unix], page 63).

The threads routines require your operating system to have some sort of shared-memory
threads support. Specifically, the FFTW threads package works with POSIX threads (avail-
able on most Unix variants, from GNU/Linux to MacOS X) and Win32 threads. We
also support using OpenMP, enabled by using --enable-openmp (instead of --enable-
threads). (This may be useful if you are employing that sort of directive in your own code,
in order to minimize conflicts.) If you have a shared-memory machine that uses a different
threads API, it should be a simple matter of programming to include support for it; see the
file threads/threads.c for more detail.

Ideally, of course, you should also have multiple processors in order to get any benefit from
the threaded transforms.

5.2 Usage of Multi-threaded FFTW

Here, it is assumed that the reader is already familiar with the usage of the uniprocessor
FFTW routines, described elsewhere in this manual. We only describe what one has to
change in order to use the multi-threaded routines.

First, programs using the parallel complex transforms should be linked with -lfftw3_
threads -lfftw3 -lm on Unix. You will also need to link with whatever library is respon-
sible for threads on your system (e.g. -lpthread on GNU/Linux).

Second, before calling any FFTW routines, you should call the function:

http://www.openmp.org

48 FFTW 3.2.1

int fftw_init_threads(void);

This function, which need only be called once, performs any one-time initialization required
to use threads on your system. It returns zero if there was some error (which should not
happen under normal circumstances) and a non-zero value otherwise.

Third, before creating a plan that you want to parallelize, you should call:

void fftw_plan_with_nthreads(int nthreads);

The nthreads argument indicates the number of threads you want FFTW to use (or actu-
ally, the maximum number). All plans subsequently created with any planner routine will
use that many threads. You can call fftw_plan_with_nthreads, create some plans, call
fftw_plan_with_nthreads again with a different argument, and create some more plans for
a new number of threads. Plans already created before a call to fftw_plan_with_nthreads
are unaffected. If you pass an nthreads argument of 1 (the default), threads are disabled
for subsequent plans.

Given a plan, you then execute it as usual with fftw_execute(plan), and the execution
will use the number of threads specified when the plan was created. When done, you destroy
it as usual with fftw_destroy_plan.

There is one additional routine: if you want to get rid of all memory and other resources
allocated internally by FFTW, you can call:

void fftw_cleanup_threads(void);

which is much like the fftw_cleanup() function except that it also gets rid of threads-
related data. You must not execute any previously created plans after calling this function.

We should also mention one other restriction: if you save wisdom from a program using the
multi-threaded FFTW, that wisdom cannot be used by a program using only the single-
threaded FFTW (i.e. not calling fftw_init_threads). See Section 3.3 [Words of Wisdom-
Saving Plans], page 18.

5.3 How Many Threads to Use?

There is a fair amount of overhead involved in synchronizing threads, so the optimal number
of threads to use depends upon the size of the transform as well as on the number of
processors you have.

As a general rule, you don’t want to use more threads than you have processors. (Using
more threads will work, but there will be extra overhead with no benefit.) In fact, if the
problem size is too small, you may want to use fewer threads than you have processors.

You will have to experiment with your system to see what level of parallelization is best
for your problem size. Typically, the problem will have to involve at least a few thou-
sand data points before threads become beneficial. If you plan with FFTW_PATIENT, it will
automatically disable threads for sizes that don’t benefit from parallelization.

5.4 Thread safety

Users writing multi-threaded programs must concern themselves with the thread safety of
the libraries they use—that is, whether it is safe to call routines in parallel from multiple

Chapter 5: Multi-threaded FFTW 49

threads. FFTW can be used in such an environment, but some care must be taken because
the planner routines share data (e.g. wisdom and trigonometric tables) between calls and
plans.

The upshot is that the only thread-safe (re-entrant) routine in FFTW is fftw_execute (and
the new-array variants thereof). All other routines (e.g. the planner) should only be called
from one thread at a time. So, for example, you can wrap a semaphore lock around any calls
to the planner; even more simply, you can just create all of your plans from one thread. We
do not think this should be an important restriction (FFTW is designed for the situation
where the only performance-sensitive code is the actual execution of the transform), and
the benefits of shared data between plans are great.

Note also that, since the plan is not modified by fftw_execute, it is safe to execute the
same plan in parallel by multiple threads. However, since a given plan operates by default
on a fixed array, you need to use one of the new-array execute functions (see Section 4.6
[New-array Execute Functions], page 37) so that different threads compute the transform
of different data.

(Users should note that these comments only apply to programs using shared-memory
threads. Parallelism using MPI or forked processes involves a separate address-space and
global variables for each process, and is not susceptible to problems of this sort.)

Chapter 6: FFTW on the Cell Processor 51

6 FFTW on the Cell Processor

Starting with version 3.2, FFTW contains specific support for the Cell Broadband Engine
(“Cell”) processor, graciously donated by the IBM Austin Research Laboratory.

Cell consists of one PowerPC core (“PPE”) and of a number of Synergistic Processing
Elements (“SPE”) to which the PPE can delegate computation. The IBM QS20 Cell blade
offers 8 SPEs per Cell chip. The Sony Playstation 3 contains 6 useable SPEs.

Currently, FFTW fully utilizes the SPEs for one- and multi-dimensional complex FFTs of
sizes that can be factored into small primes, both in single and double precision. Transforms
of real data use SPEs only partially at this time. If FFTW cannot use the SPEs, it falls
back to a slower computation on the PPE.

FFTW is meant to use the SPEs transparently without user intervention. However, certain
caveats apply, which are discussed later in this document.

6.1 Cell Installation

All of the FFTW Cell code is located in the cell subdirectory of the FFTW package. On
Unix systems, the FFTW Cell support is automatically configured, compiled, and included
in the uniprocessor FFTW libraries simply by including --enable-cell in the flags to the
configure script (see Section 9.1 [Installation on Unix], page 63).

Both double precision (the default) and single precision are supported on the Cell; for the
latter, configure with --enable-cell --enable-single.

In addition, the PPE supports the Altivec (or VMX) instruction set in single precision.
(Altivec is Apple/Freescale terminology, VMX is IBM terminology for the same thing.)
You can enable support for Altivec with the --enable-altivec flag (single precision only).

The software compiles with the Cell SDK 2.0, and probably with earlier ones as well.

6.2 Cell Caveats

• The FFTW benchmark program allocates memory using malloc() or equivalent library
calls, reflecting the common usage of the FFTW library. However, you can sometimes
improve performance significantly by allocating memory in system-specific large TLB
pages. E.g., we have seen 39 GFLOPS/s for a 256 × 256 × 256 problem using large
pages, whereas the speed is about 25 GFLOPS/s with normal pages. YMMV.

• FFTW hoards all available SPEs for itself. You can optionally choose a different number
of SPEs by calling the undocumented function fftw_cell_set_nspe(n), where n is the
number of desired SPEs. Expect this interface to go away once we figure out how to
make FFTW play nicely with other Cell software.
In particular, if you try to link both the single and double precision of FFTW in the
same program (which you can do), they will both try to grab all SPEs and the second
one will hang.

• The SPEs demand that data be stored in contiguous arrays aligned at 16-byte bound-
aries. If you instruct FFTW to operate on noncontiguous or nonaligned data, the SPEs
will not be used, resulting in slow execution. See Section 3.1 [Data Alignment], page 15.

52 FFTW 3.2.1

• The FFTW_ESTIMATE mode may produce seriously suboptimal plans, and it becomes
particularly confused if you enable both the SPEs and Altivec. If you care about
performance, please use FFTW_MEASURE or FFTW_PATIENT until we figure out a more
reliable performance model.

6.3 FFTW Accuracy on Cell

The SPEs are fully IEEE-754 compliant in double precision. In single precision, they only
implement round-towards-zero as opposed to the standard round-to-even mode. (The PPE
is fully IEEE-754 compliant like all other PowerPC implementations.) Because of the round-
ing mode, FFTW is less accurate when running on the SPEs than on the PPE. The accuracy
loss is hard to quantify in general, but as a rough guideline, the L2 norm of the relative
roundoff error for random inputs is 4 to 8 times larger than the corresponding calculation
in round-to-even arithmetic. In other words, expect to lose 2 to 3 bits of accuracy.

FFTW currently does not use any algorithm that degrades accuracy to gain performance
on the SPE. One implication of this choice is that large 1D transforms run slower than they
would if we were willing to sacrifice another bit or so of accuracy.

Chapter 7: Calling FFTW from Fortran 53

7 Calling FFTW from Fortran

This chapter describes the Fortran-callable interface to FFTW, which differs from the C
interface only in the prefix (‘dfftw_’ instead of ‘fftw_’), and a few other minor details. The
Fortran interface is included in the FFTW libraries by default, unless a Fortran compiler
isn’t found on your system or --disable-fortran is included in the configure flags. We
assume here that the reader is already familiar with the usage of FFTW in C, as described
elsewhere in this manual.

7.1 Fortran-interface routines

Nearly all of the FFTW functions have Fortran-callable equivalents. The name of the
Fortran routine is the same as that of the corresponding C routine, but with the ‘fftw_’
prefix replaced by ‘dfftw_’. (The single and long-double precision versions use ‘sfftw_’
and ‘lfftw_’, respectively, instead of ‘fftwf_’ and ‘fftwl_’.)1

For the most part, all of the arguments to the functions are the same, with the following
exceptions:

• plan variables (what would be of type fftw_plan in C), must be declared as a type
that is at least as big as a pointer (address) on your machine. We recommend using
integer*8.

• Any function that returns a value (e.g. fftw_plan_dft) is converted into a subroutine.
The return value is converted into an additional first parameter of this subroutine.2

• The Fortran routines expect multi-dimensional arrays to be in column-major order,
which is the ordinary format of Fortran arrays (see Section 3.2 [Multi-dimensional
Array Format], page 16). They do this transparently and costlessly simply by reversing
the order of the dimensions passed to FFTW, but this has one important consequence
for multi-dimensional real-complex transforms, discussed below.

• Wisdom import and export is somewhat more tricky because one cannot easily pass
files or strings between C and Fortran; see Section 7.5 [Wisdom of Fortran?], page 56.

• Fortran cannot use the fftw_malloc dynamic-allocation routine. If you want to exploit
the SIMD FFTW (see Section 3.1 [Data Alignment], page 15), you’ll need to figure out
some other way to ensure that your arrays are at least 16-byte aligned.

• Since Fortran 77 does not have data structures, the fftw_iodim structure from the
guru interface (see Section 4.5.2 [Guru vector and transform sizes], page 33) must be
split into separate arguments. In particular, any fftw_iodim array arguments in the C
guru interface become three integer array arguments (n, is, and os) in the Fortran guru
interface, all of whose lengths should be equal to the corresponding rank argument.

• The guru planner interface in Fortran does not do any automatic translation between
column-major and row-major; you are responsible for setting the strides etcetera to
correspond to your Fortran arrays. However, as a slight bug that we are preserving for

1 Technically, Fortran 77 identifiers are not allowed to have more than 6 characters, nor may they contain
underscores. Any compiler that enforces this limitation doesn’t deserve to link to FFTW.

2 The reason for this is that some Fortran implementations seem to have trouble with C function return values,
and vice versa.

54 FFTW 3.2.1

backwards compatibility, the ‘plan_guru_r2r’ in Fortran does reverse the order of its
kind array parameter, so the kind array of that routine should be in the reverse of the
order of the iodim arrays (see above).

In general, you should take care to use Fortran data types that correspond to (i.e. are the
same size as) the C types used by FFTW. If your C and Fortran compilers are made by
the same vendor, the correspondence is usually straightforward (i.e. integer corresponds
to int, real corresponds to float, etcetera). The native Fortran double/single-precision
complex type should be compatible with fftw_complex/fftwf_complex. Such simple cor-
respondences are assumed in the examples below.

7.2 FFTW Constants in Fortran

When creating plans in FFTW, a number of constants are used to specify options, such as
FFTW_MEASURE or FFTW_ESTIMATE. The same constants must be used with the wrapper rou-
tines, but of course the C header files where the constants are defined can’t be incorporated
directly into Fortran code.

Instead, we have placed Fortran equivalents of the FFTW constant definitions in the file
fftw3.f, which can be found in the same directory as fftw3.h. If your Fortran compiler
supports a preprocessor of some sort, you should be able to include or #include this file;
otherwise, you can paste it directly into your code.

In C, you combine different flags (like FFTW_PRESERVE_INPUT and FFTW_MEASURE) using the
‘|’ operator; in Fortran you should just use ‘+’. (Take care not to add in the same flag more
than once, though.)

7.3 FFTW Execution in Fortran

In C, in order to use a plan, one normally calls fftw_execute, which executes the plan to
perform the transform on the input/output arrays passed when the plan was created (see
Section 4.2 [Using Plans], page 22). The corresponding subroutine call in Fortran is:

call dfftw_execute(plan)

However, we have had reports that this causes problems with some recent optimizing For-
tran compilers. The problem is, because the input/output arrays are not passed as explicit
arguments to dfftw_execute, the semantics of Fortran (unlike C) allow the compiler to as-
sume that the input/output arrays are not changed by dfftw_execute. As a consequence,
certain compilers end up optimizing out or repositioning the call to dfftw_execute, assum-
ing incorrectly that it does nothing.

There are various workarounds to this, but the safest and simplest thing is to not use
dfftw_execute in Fortran. Instead, use the functions described in Section 4.6 [New-array
Execute Functions], page 37, which take the input/output arrays as explicit arguments. For
example, if the plan is for a complex-data DFT and was created for the arrays in and out,
you would do:

call dfftw_execute_dft(plan, in, out)

There are a few things to be careful of, however:

Chapter 7: Calling FFTW from Fortran 55

• You must use the correct type of execute function, matching the way the plan was
created. Complex DFT plans should use dfftw_execute_dft, Real-input (r2c) DFT
plans should use use dfftw_execute_dft_r2c, and real-output (c2r) DFT plans should
use dfftw_execute_dft_c2r. The various r2r plans should use dfftw_execute_r2r.

• You should normally pass the same input/output arrays that were used when creating
the plan. This is always safe.

• If you pass different input/output arrays compared to those used when creating the
plan, you must abide by all the restrictions of the new-array execute functions (see
Section 4.6 [New-array Execute Functions], page 37). The most difficult of these, in
Fortran, is the requirement that the new arrays have the same alignment as the original
arrays, because there seems to be no way in Fortran to obtain guaranteed-aligned arrays
(analogous to fftw_malloc in C). You can, of course, use the FFTW_UNALIGNED flag
when creating the plan, in which case the plan does not depend on the alignment,
but this may sacrifice substantial performance on architectures (like x86) with SIMD
instructions (see Section 3.1.1 [SIMD alignment and fftw malloc], page 15).

7.4 Fortran Examples

In C, you might have something like the following to transform a one-dimensional complex
array:

fftw_complex in[N], out[N];
fftw_plan plan;

plan = fftw_plan_dft_1d(N,in,out,FFTW_FORWARD,FFTW_ESTIMATE);
fftw_execute(plan);
fftw_destroy_plan(plan);

In Fortran, you would use the following to accomplish the same thing:

double complex in, out
dimension in(N), out(N)
integer*8 plan

call dfftw_plan_dft_1d(plan,N,in,out,FFTW_FORWARD,FFTW_ESTIMATE)
call dfftw_execute_dft(plan, in, out)
call dfftw_destroy_plan(plan)

Notice how all routines are called as Fortran subroutines, and the plan is returned via
the first argument to dfftw_plan_dft_1d. Notice also that we changed fftw_execute to
dfftw_execute_dft (see Section 7.3 [FFTW Execution in Fortran], page 54). To do the
same thing, but using 8 threads in parallel (see Chapter 5 [Multi-threaded FFTW], page 47),
you would simply prefix these calls with:

call dfftw_init_threads
call dfftw_plan_with_nthreads(8)

To transform a three-dimensional array in-place with C, you might do:

fftw_complex arr[L][M][N];
fftw_plan plan;

56 FFTW 3.2.1

plan = fftw_plan_dft_3d(L,M,N, arr,arr,
FFTW_FORWARD, FFTW_ESTIMATE);

fftw_execute(plan);
fftw_destroy_plan(plan);

In Fortran, you would use this instead:

double complex arr
dimension arr(L,M,N)
integer*8 plan

call dfftw_plan_dft_3d(plan, L,M,N, arr,arr,
& FFTW_FORWARD, FFTW_ESTIMATE)
call dfftw_execute_dft(plan, arr, arr)
call dfftw_destroy_plan(plan)

Note that we pass the array dimensions in the “natural” order in both C and Fortran.

To transform a one-dimensional real array in Fortran, you might do:

double precision in
dimension in(N)
double complex out
dimension out(N/2 + 1)
integer*8 plan

call dfftw_plan_dft_r2c_1d(plan,N,in,out,FFTW_ESTIMATE)
call dfftw_execute_dft_r2c(plan, in, out)
call dfftw_destroy_plan(plan)

To transform a two-dimensional real array, out of place, you might use the following:

double precision in
dimension in(M,N)
double complex out
dimension out(M/2 + 1, N)
integer*8 plan

call dfftw_plan_dft_r2c_2d(plan,M,N,in,out,FFTW_ESTIMATE)
call dfftw_execute_dft_r2c(plan, in, out)
call dfftw_destroy_plan(plan)

Important: Notice that it is the first dimension of the complex output array that is cut
in half in Fortran, rather than the last dimension as in C. This is a consequence of the
interface routines reversing the order of the array dimensions passed to FFTW so that the
Fortran program can use its ordinary column-major order.

7.5 Wisdom of Fortran?

In this section, we discuss how one can import/export FFTW wisdom (saved plans) to/from
a Fortran program; we assume that the reader is already familiar with wisdom, as described
in Section 3.3 [Words of Wisdom-Saving Plans], page 18.

Chapter 7: Calling FFTW from Fortran 57

The basic problem is that is difficult to (portably) pass files and strings between Fortran
and C, so we cannot provide a direct Fortran equivalent to the fftw_export_wisdom_
to_file, etcetera, functions. Fortran interfaces are provided for the functions that do
not take file/string arguments, however: dfftw_import_system_wisdom, dfftw_import_
wisdom, dfftw_export_wisdom, and dfftw_forget_wisdom.

So, for example, to import the system-wide wisdom, you would do:

integer isuccess
call dfftw_import_system_wisdom(isuccess)

As usual, the C return value is turned into a first parameter; isuccess is non-zero on
success and zero on failure (e.g. if there is no system wisdom installed).

If you want to import/export wisdom from/to an arbitrary file or elsewhere, you can em-
ploy the generic dfftw_import_wisdom and dfftw_export_wisdom functions, for which you
must supply a subroutine to read/write one character at a time. The FFTW package con-
tains an example file doc/f77_wisdom.f demonstrating how to implement import_wisdom_
from_file and export_wisdom_to_file subroutines in this way. (These routines cannot
be compiled into the FFTW library itself, lest all FFTW-using programs be required to
link with the Fortran I/O library.)

Chapter 8: Upgrading from FFTW version 2 59

8 Upgrading from FFTW version 2

In this chapter, we outline the process for updating codes designed for the older FFTW 2
interface to work with FFTW 3. The interface for FFTW 3 is not backwards-compatible
with the interface for FFTW 2 and earlier versions; codes written to use those versions will
fail to link with FFTW 3. Nor is it possible to write “compatibility wrappers” to bridge
the gap (at least not efficiently), because FFTW 3 has different semantics from previous
versions. However, upgrading should be a straightforward process because the data formats
are identical and the overall style of planning/execution is essentially the same.

Unlike FFTW 2, there are no separate header files for real and complex transforms (or even
for different precisions) in FFTW 3; all interfaces are defined in the <fftw3.h> header file.

Numeric Types

The main difference in data types is that fftw_complex in FFTW 2 was defined as a
struct with macros c_re and c_im for accessing the real/imaginary parts. (This is binary-
compatible with FFTW 3 on any machine except perhaps for some older Crays in single
precision.) The equivalent macros for FFTW 3 are:

#define c_re(c) ((c)[0])
#define c_im(c) ((c)[1])

This does not work if you are using the C99 complex type, however, unless you insert a
double* typecast into the above macros (see Section 4.1.1 [Complex numbers], page 21).

Also, FFTW 2 had an fftw_real typedef that was an alias for double (in double precision).
In FFTW 3 you should just use double (or whatever precision you are employing).

Plans

The major difference between FFTW 2 and FFTW 3 is in the planning/execution division
of labor. In FFTW 2, plans were found for a given transform size and type, and then
could be applied to any arrays and for any multiplicity/stride parameters. In FFTW 3,
you specify the particular arrays, stride parameters, etcetera when creating the plan, and
the plan is then executed for those arrays (unless the guru interface is used) and those
parameters only. (FFTW 2 had “specific planner” routines that planned for a particular
array and stride, but the plan could still be used for other arrays and strides.) That is,
much of the information that was formerly specified at execution time is now specified at
planning time.

Like FFTW 2’s specific planner routines, the FFTW 3 planner overwrites the input/output
arrays unless you use FFTW_ESTIMATE.

FFTW 2 had separate data types fftw_plan, fftwnd_plan, rfftw_plan, and rfftwnd_
plan for complex and real one- and multi-dimensional transforms, and each type had its
own ‘destroy’ function. In FFTW 3, all plans are of type fftw_plan and all are destroyed
by fftw_destroy_plan(plan).

Where you formerly used fftw_create_plan and fftw_one to plan and compute a single
1d transform, you would now use fftw_plan_dft_1d to plan the transform. If you used

60 FFTW 3.2.1

the generic fftw function to execute the transform with multiplicity (howmany) and stride
parameters, you would now use the advanced interface fftw_plan_many_dft to specify
those parameters. The plans are now executed with fftw_execute(plan), which takes all
of its parameters (including the input/output arrays) from the plan.

In-place transforms no longer interpret their output argument as scratch space, nor is there
an FFTW_IN_PLACE flag. You simply pass the same pointer for both the input and output
arguments. (Previously, the output ostride and odist parameters were ignored for in-
place transforms; now, if they are specified via the advanced interface, they are significant
even in the in-place case, although they should normally equal the corresponding input
parameters.)

The FFTW_ESTIMATE and FFTW_MEASURE flags have the same meaning as before, although the
planning time will differ. You may also consider using FFTW_PATIENT, which is like FFTW_
MEASURE except that it takes more time in order to consider a wider variety of algorithms.

For multi-dimensional complex DFTs, instead of fftwnd_create_plan (or fftw2d_create_
plan or fftw3d_create_plan), followed by fftwnd_one, you would use fftw_plan_dft (or
fftw_plan_dft_2d or fftw_plan_dft_3d). followed by fftw_execute. If you used fftwnd
to to specify strides etcetera, you would instead specify these via fftw_plan_many_dft.

The analogues to rfftw_create_plan and rfftw_one with FFTW_REAL_TO_COMPLEX or
FFTW_COMPLEX_TO_REAL directions are fftw_plan_r2r_1d with kind FFTW_R2HC or FFTW_
HC2R, followed by fftw_execute. The stride etcetera arguments of rfftw are now in fftw_
plan_many_r2r.

Instead of rfftwnd_create_plan (or rfftw2d_create_plan or rfftw3d_create_plan)
followed by rfftwnd_one_real_to_complex or rfftwnd_one_complex_to_real, you now
use fftw_plan_dft_r2c (or fftw_plan_dft_r2c_2d or fftw_plan_dft_r2c_3d) or fftw_
plan_dft_c2r (or fftw_plan_dft_c2r_2d or fftw_plan_dft_c2r_3d), respectively, fol-
lowed by fftw_execute. As usual, the strides etcetera of rfftwnd_real_to_complex or
rfftwnd_complex_to_real are no specified in the advanced planner routines, fftw_plan_
many_dft_r2c or fftw_plan_many_dft_c2r.

Wisdom

In FFTW 2, you had to supply the FFTW_USE_WISDOM flag in order to use wisdom; in FFTW
3, wisdom is always used. (You could simulate the FFTW 2 wisdom-less behavior by calling
fftw_forget_wisdom after every planner call.)

The FFTW 3 wisdom import/export routines are almost the same as before (although the
storage format is entirely different). There is one significant difference, however. In FFTW
2, the import routines would never read past the end of the wisdom, so you could store
extra data beyond the wisdom in the same file, for example. In FFTW 3, the file-import
routine may read up to a few hundred bytes past the end of the wisdom, so you cannot
store other data just beyond it.1

Wisdom has been enhanced by additional humility in FFTW 3: whereas FFTW 2 would
re-use wisdom for a given transform size regardless of the stride etc., in FFTW 3 wisdom is

1 We do our own buffering because GNU libc I/O routines are horribly slow for single-character I/O, apparently
for thread-safety reasons (whether you are using threads or not).

Chapter 8: Upgrading from FFTW version 2 61

only used with the strides etc. for which it was created. Unfortunately, this means FFTW
3 has to create new plans from scratch more often than FFTW 2 (in FFTW 2, planning
e.g. one transform of size 1024 also created wisdom for all smaller powers of 2, but this no
longer occurs).

FFTW 3 also has the new routine fftw_import_system_wisdom to import wisdom from a
standard system-wide location.

Memory allocation

In FFTW 3, we recommend allocating your arrays with fftw_malloc and deallocating
them with fftw_free; this is not required, but allows optimal performance when SIMD
acceleration is used. (Those two functions actually existed in FFTW 2, and worked the
same way, but were not documented.)

In FFTW 2, there were fftw_malloc_hook and fftw_free_hook functions that allowed
the user to replace FFTW’s memory-allocation routines (e.g. to implement different error-
handling, since by default FFTW prints an error message and calls exit to abort the
program if malloc returns NULL). These hooks are not supported in FFTW 3; those few
users who require this functionality can just directly modify the memory-allocation routines
in FFTW (they are defined in kernel/alloc.c).

Fortran interface

In FFTW 2, the subroutine names were obtained by replacing ‘fftw_’ with ‘fftw_f77’; in
FFTW 3, you replace ‘fftw_’ with ‘dfftw_’ (or ‘sfftw_’ or ‘lfftw_’, depending upon the
precision).

In FFTW 3, we have begun recommending that you always declare the type used to store
plans as integer*8. (Too many people didn’t notice our instruction to switch from integer
to integer*8 for 64-bit machines.)

In FFTW 3, we provide a fftw3.f “header file” to include in your code (and which is
officially installed on Unix systems). (In FFTW 2, we supplied a fftw_f77.i file, but it
was not installed.)

Otherwise, the C-Fortran interface relationship is much the same as it was before (e.g.
return values become initial parameters, and multi-dimensional arrays are in column-major
order). Unlike FFTW 2, we do provide some support for wisdom import/export in Fortran
(see Section 7.5 [Wisdom of Fortran?], page 56).

Threads

Like FFTW 2, only the execution routines are thread-safe. All planner routines, etcetera,
should be called by only a single thread at a time (see Section 5.4 [Thread safety], page 48).
Unlike FFTW 2, there is no special FFTW_THREADSAFE flag for the planner to allow a given
plan to be usable by multiple threads in parallel; this is now the case by default.

The multi-threaded version of FFTW 2 required you to pass the number of threads each
time you execute the transform. The number of threads is now stored in the plan, and is
specified before the planner is called by fftw_plan_with_nthreads. The threads initial-
ization routine used to be called fftw_threads_init and would return zero on success;

62 FFTW 3.2.1

the new routine is called fftw_init_threads and returns zero on failure. See Chapter 5
[Multi-threaded FFTW], page 47.

There is no separate threads header file in FFTW 3; all the function prototypes are in
<fftw3.h>. However, you still have to link to a separate library (-lfftw3_threads -
lfftw3 -lm on Unix), as well as to the threading library (e.g. POSIX threads on Unix).

Chapter 9: Installation and Customization 63

9 Installation and Customization

This chapter describes the installation and customization of FFTW, the latest version of
which may be downloaded from the FFTW home page.

In principle, FFTW should work on any system with an ANSI C compiler (gcc is fine).
However, planner time is drastically reduced if FFTW can exploit a hardware cycle counter;
FFTW comes with cycle-counter support for all modern general-purpose CPUs, but you may
need to add a couple of lines of code if your compiler is not yet supported (see Section 9.3
[Cycle Counters], page 66). (On Unix, there will be a warning at the end of the configure
output if no cycle counter is found.)

Installation of FFTW is simplest if you have a Unix or a GNU system, such as GNU/Linux,
and we describe this case in the first section below, including the use of special configuration
options to e.g. install different precisions or exploit optimizations for particular architectures
(e.g. SIMD). Compilation on non-Unix systems is a more manual process, but we outline
the procedure in the second section. It is also likely that pre-compiled binaries will be
available for popular systems.

Finally, we describe how you can customize FFTW for particular needs by generating
codelets for fast transforms of sizes not supported efficiently by the standard FFTW distri-
bution.

9.1 Installation on Unix

FFTW comes with a configure program in the GNU style. Installation can be as simple
as:

./configure
make
make install

This will build the uniprocessor complex and real transform libraries along with the test
programs. (We recommend that you use GNU make if it is available; on some systems
it is called gmake.) The “make install” command installs the fftw and rfftw libraries in
standard places, and typically requires root privileges (unless you specify a different install
directory with the --prefix flag to configure). You can also type “make check” to put
the FFTW test programs through their paces. If you have problems during configuration
or compilation, you may want to run “make distclean” before trying again; this ensures
that you don’t have any stale files left over from previous compilation attempts.

The configure script chooses the gcc compiler by default, if it is available; you can select
some other compiler with:

./configure CC="<the name of your C compiler>"

The configure script knows good CFLAGS (C compiler flags) for a few systems. If your
system is not known, the configure script will print out a warning. In this case, you
should re-configure FFTW with the command

./configure CFLAGS="<write your CFLAGS here>"

http://www.fftw.org

64 FFTW 3.2.1

and then compile as usual. If you do find an optimal set of CFLAGS for your system, please
let us know what they are (along with the output of config.guess) so that we can include
them in future releases.

configure supports all the standard flags defined by the GNU Coding Standards; see the
INSTALL file in FFTW or the GNU web page. Note especially --help to list all flags and
--enable-shared to create shared, rather than static, libraries. configure also accepts a
few FFTW-specific flags, particularly:

• --enable-portable-binary: Disable compiler optimizations that would produce un-
portable binaries. Important: Use this if you are distributing compiled binaries to
people who may not use exactly the same processor as you.

• --with-gcc-arch=arch: When compiling with gcc, FFTW tries to deduce the current
CPU in order to tell gcc what architecture to tune for; this option overrides that guess
(i.e. arch should be a valid argument for gcc’s -march or -mtune flags). You might
do this because the deduced architecture was wrong or because you want to tune for
a different CPU than the one you are compiling with. You can use --without-gcc-
arch to disable architecture-specific tuning entirely. Note that if --enable-portable-
binary is enabled (above), then we use -mtune but not -march, so the resulting binary
will run on any architecture even though it is optimized for a particular one.

• --enable-float: Produces a single-precision version of FFTW (float) instead of the
default double-precision (double). See Section 4.1.2 [Precision], page 21.

• --enable-long-double: Produces a long-double precision version of FFTW (long
double) instead of the default double-precision (double). The configure script will
halt with an error message is long double is the same size as double on your ma-
chine/compiler. See Section 4.1.2 [Precision], page 21.

• --enable-threads: Enables compilation and installation of the FFTW threads library
(see Chapter 5 [Multi-threaded FFTW], page 47), which provides a simple interface to
parallel transforms for SMP systems. By default, the threads routines are not compiled.

• --enable-openmp: Like --enable-threads, but using OpenMP compiler directives
in order to induce parallelism rather than spawning its own threads directly. Useful
especially for programs already employing such directives, in order to minimize con-
flicts between different parallelization mechanisms. Use either --enable-openmp or --
enable-threads, not both; in either case the multi-threaded FFTW interface/library
(see Chapter 5 [Multi-threaded FFTW], page 47) is compiled (with different back ends).

• --with-combined-threads: By default, if --enable-threads or --enable-openmp
are used, the threads support is compiled into a separate library that must be linked
in addition to the main FFTW library. This is so that users of the serial library do not
need to link the system threads libraries. If --with-combined-threads is specified,
however, then no separate threads library is created, and threads are included in the
main FFTW library. This is mainly useful under Windows, where no system threads
library is required and inter-library dependencies are problematic.

• --enable-cell: Enables code to exploit the Cell processor (see Chapter 6 [FFTW on
the Cell Processor], page 51), assuming you have the Cell SDK. By default, code for
the Cell processor is not compiled.

• --disable-fortran: Disables inclusion of Fortran-callable wrapper routines (see
Chapter 7 [Calling FFTW from Fortran], page 53) in the standard FFTW libraries.

http://www.gnu.org/prep/standards_toc.html

Chapter 9: Installation and Customization 65

These wrapper routines increase the library size by only a negligible amount, so they
are included by default as long as the configure script finds a Fortran compiler
on your system. (To specify a particular Fortran compiler foo, pass F77=foo to
configure.)

• --with-g77-wrappers: By default, when Fortran wrappers are included, the wrappers
employ the linking conventions of the Fortran compiler detected by the configure
script. If this compiler is GNU g77, however, then two versions of the wrappers are
included: one with g77’s idiosyncratic convention of appending two underscores to
identifiers, and one with the more common convention of appending only a single
underscore. This way, the same FFTW library will work with both g77 and other
Fortran compilers, such as GNU gfortran. However, the converse is not true: if you
configure with a different compiler, then the g77-compatible wrappers are not included.
By specifying --with-g77-wrappers, the g77-compatible wrappers are included in
addition to wrappers for whatever Fortran compiler configure finds.

• --with-slow-timer: Disables the use of hardware cycle counters, and falls back on
gettimeofday or clock. This greatly worsens performance, and should generally not
be used (unless you don’t have a cycle counter but still really want an optimized plan
regardless of the time). See Section 9.3 [Cycle Counters], page 66.

• --enable-sse, --enable-sse2, --enable-altivec, --enable-mips-ps: Enable the
compilation of SIMD code for SSE (Pentium III+), SSE2 (Pentium IV+), AltiVec (Pow-
erPC G4+), or MIPS PS. SSE, AltiVec, and MIPS PS only work with --enable-float
(above), while SSE2 only works in double precision (the default). The resulting code
will still work on earlier CPUs lacking the SIMD extensions (SIMD is automatically
disabled, although the FFTW library is still larger).
− These options require a compiler supporting SIMD extensions, and compiler sup-

port is still a bit flaky: see the FFTW FAQ for a list of compiler versions that
have problems compiling FFTW.

− With the Linux kernel, you may have to recompile the kernel with the option to
support SSE/SSE2/AltiVec (see the “Processor type and features” settings).

− With AltiVec and gcc, you may have to use the -mabi=altivec option when
compiling any code that links to FFTW, in order to properly align the stack;
otherwise, FFTW could crash when it tries to use an AltiVec feature. (This is not
necessary on MacOS X.)

− With SSE/SSE2 and gcc, you should use a version of gcc that properly aligns the
stack when compiling any code that links to FFTW. By default, gcc 2.95 and later
versions align the stack as needed, but you should not compile FFTW with the
-Os option or the -mpreferred-stack-boundary option with an argument less
than 4.

To force configure to use a particular C compiler foo (instead of the default, usually gcc),
pass CC=foo to the configure script; you may also need to set the flags via the variable
CFLAGS as described above.

9.2 Installation on non-Unix systems

It should be relatively straightforward to compile FFTW even on non-Unix systems lacking
the niceties of a configure script. Basically, you need to edit the config.h header (copy it

66 FFTW 3.2.1

from config.h.in) to #define the various options and compiler characteristics, and then
compile all the ‘.c’ files in the relevant directories.

The config.h header contains about 100 options to set, each one initially an #undef, each
documented with a comment, and most of them fairly obvious. For most of the options,
you should simply #define them to 1 if they are applicable, although a few options require
a particular value (e.g. SIZEOF_LONG_LONG should be defined to the size of the long long
type, in bytes, or zero if it is not supported). We will likely post some sample config.h
files for various operating systems and compilers for you to use (at least as a starting point).
Please let us know if you have to hand-create a configuration file (and/or a pre-compiled
binary) that you want to share.

To create the FFTW library, you will then need to compile all of the ‘.c’ files in the kernel,
dft, dft/scalar, dft/scalar/codelets, rdft, rdft/scalar, rdft/scalar/r2cf,
rdft/scalar/r2cb, rdft/scalar/r2r, reodft, and api directories. If you are compiling
with SIMD support (e.g. you defined HAVE_SSE2 in config.h), then you also need to
compile the .c files in the simd, simd/nonportable, dft/simd, and dft/simd/codelets
directories.

Once these files are all compiled, link them into a library, or a shared library, or directly
into your program.

To compile the FFTW test program, additionally compile the code in the libbench2/
directory, and link it into a library. Then compile the code in the tests/ directory and link
it to the libbench2 and FFTW libraries. To compile the fftw-wisdom (command-line) tool
(see Section 4.7.4 [Wisdom Utilities], page 40), compile tools/fftw-wisdom.c and link it
to the libbench2 and FFTW libraries

9.3 Cycle Counters

FFTW’s planner actually executes and times different possible FFT algorithms in order
to pick the fastest plan for a given n. In order to do this in as short a time as possible,
however, the timer must have a very high resolution, and to accomplish this we employ
the hardware cycle counters that are available on most CPUs. Currently, FFTW supports
the cycle counters on x86, PowerPC/POWER, Alpha, UltraSPARC (SPARC v9), IA64,
PA-RISC, and MIPS processors.

Access to the cycle counters, unfortunately, is a compiler and/or operating-system depen-
dent task, often requiring inline assembly language, and it may be that your compiler is
not supported. If you are not supported, FFTW will by default fall back on its estimator
(effectively using FFTW_ESTIMATE for all plans).

You can add support by editing the file kernel/cycle.h; normally, this will involve adapting
one of the examples already present in order to use the inline-assembler syntax for your C
compiler, and will only require a couple of lines of code. Anyone adding support for a new
system to cycle.h is encouraged to email us at fftw@fftw.org.

If a cycle counter is not available on your system (e.g. some embedded processor), and you
don’t want to use estimated plans, as a last resort you can use the --with-slow-timer
option to configure (on Unix) or #define WITH_SLOW_TIMER in config.h (elsewhere).
This will use the much lower-resolution gettimeofday function, or even clock if the former
is unavailable, and planning will be extremely slow.

mailto:fftw@fftw.org

Chapter 9: Installation and Customization 67

9.4 Generating your own code

The directory genfft contains the programs that were used to generate FFTW’s “codelets,”
which are hard-coded transforms of small sizes. We do not expect casual users to employ the
generator, which is a rather sophisticated program that generates directed acyclic graphs of
FFT algorithms and performs algebraic simplifications on them. It was written in Objective
Caml, a dialect of ML, which is available at http://pauillac.inria.fr/ocaml/.

If you have Objective Caml installed (along with recent versions of GNU autoconf,
automake, and libtool), then you can change the set of codelets that are generated
or play with the generation options. The set of generated codelets is specified
by the dft/codelets/*/Makefile.am, dft/simd/codelets/Makefile.am, and
rdft/codelets/*/Makefile.am files. For example, you can add efficient REDFT codelets
of small sizes by modifying rdft/codelets/r2r/Makefile.am. After you modify any
Makefile.am files, you can type sh bootstrap.sh in the top-level directory followed by
make to re-generate the files.

We do not provide more details about the code-generation process, since we do not expect
that most users will need to generate their own code. However, feel free to contact us at
fftw@fftw.org if you are interested in the subject.

You might find it interesting to learn Caml and/or some modern programming techniques
that we used in the generator (including monadic programming), especially if you heard the
rumor that Java and object-oriented programming are the latest advancement in the field.
The internal operation of the codelet generator is described in the paper, “A Fast Fourier
Transform Compiler,” by M. Frigo, which is available from the FFTW home page and
also appeared in the Proceedings of the 1999 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI).

http://pauillac.inria.fr/ocaml/
mailto:fftw@fftw.org
http://www.fftw.org

Chapter 10: Acknowledgments 69

10 Acknowledgments

Matteo Frigo was supported in part by the Special Research Program SFB F011 “AU-
RORA” of the Austrian Science Fund FWF and by MIT Lincoln Laboratory. For previous
versions of FFTW, he was supported in part by the Defense Advanced Research Projects
Agency (DARPA), under Grants N00014-94-1-0985 and F30602-97-1-0270, and by a Digital
Equipment Corporation Fellowship.

Steven G. Johnson was supported in part by a Dept. of Defense NDSEG Fellowship, an MIT
Karl Taylor Compton Fellowship, and by the Materials Research Science and Engineering
Center program of the National Science Foundation under award DMR-9400334.

Code for the Cell Broadband Engine was graciously donated to the FFTW project by the
IBM Austin Research Lab.

Code for the MIPS paired-single SIMD support was graciously donated to the FFTW
project by CodeSourcery, Inc.

We are grateful to Sun Microsystems Inc. for its donation of a cluster of 9 8-processor Ultra
HPC 5000 SMPs (24 Gflops peak). These machines served as the primary platform for the
development of early versions of FFTW.

We thank Intel Corporation for donating a four-processor Pentium Pro machine. We thank
the GNU/Linux community for giving us a decent OS to run on that machine.

We are thankful to the AMD corporation for donating an AMD Athlon XP 1700+ computer
to the FFTW project.

We thank the Compaq/HP testdrive program and VA Software Corporation
(SourceForge.net) for providing remote access to machines that were used to test FFTW.

The genfft suite of code generators was written using Objective Caml, a dialect of ML.
Objective Caml is a small and elegant language developed by Xavier Leroy. The implemen-
tation is available from http://caml.inria.fr/. In previous releases of FFTW, genfft
was written in Caml Light, by the same authors. An even earlier implementation of genfft
was written in Scheme, but Caml is definitely better for this kind of application.

FFTW uses many tools from the GNU project, including automake, texinfo, and libtool.

Prof. Charles E. Leiserson of MIT provided continuous support and encouragement. This
program would not exist without him. Charles also proposed the name “codelets” for the
basic FFT blocks.

Prof. John D. Joannopoulos of MIT demonstrated continuing tolerance of Steven’s “extra-
curricular” computer-science activities, as well as remarkable creativity in working them
into his grant proposals. Steven’s physics degree would not exist without him.

Franz Franchetti wrote SIMD extensions to FFTW 2, which eventually led to the SIMD
support in FFTW 3.

Stefan Kral wrote most of the K7 code generator distributed with FFTW 3.0.x and 3.1.x.

Andrew Sterian contributed the Windows timing code in FFTW 2.

http://caml.inria.fr/

70 FFTW 3.2.1

Didier Miras reported a bug in the test procedure used in FFTW 1.2. We now use a
completely different test algorithm by Funda Ergun that does not require a separate FFT
program to compare against.

Wolfgang Reimer contributed the Pentium cycle counter and a few fixes that help portabil-
ity.

Ming-Chang Liu uncovered a well-hidden bug in the complex transforms of FFTW 2.0 and
supplied a patch to correct it.

The FFTW FAQ was written in bfnn (Bizarre Format With No Name) and formatted using
the tools developed by Ian Jackson for the Linux FAQ.

We are especially thankful to all of our users for their continuing support, feedback, and
interest during our development of FFTW.

Chapter 11: License and Copyright 71

11 License and Copyright

FFTW is Copyright c© 2003 Matteo Frigo, Copyright c© 2003 Massachusetts Institute of
Technology.

FFTW is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version
2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program;
if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
MA 02111-1307 USA. You can also find the GPL on the GNU web site.

In addition, we kindly ask you to acknowledge FFTW and its authors in any program
or publication in which you use FFTW. (You are not required to do so; it is up to your
common sense to decide whether you want to comply with this request or not.) For general
publications, we suggest referencing: Matteo Frigo and Steven G. Johnson, “The design
and implementation of FFTW3,” Proc. IEEE 93 (2), 216–231 (2005).

Non-free versions of FFTW are available under terms different from those of the General
Public License. (e.g. they do not require you to accompany any object code using FFTW
with the corresponding source code.) For these alternative terms you must purchase a
license from MIT’s Technology Licensing Office. Users interested in such a license should
contact us (fftw@fftw.org) for more information.

http://www.gnu.org/copyleft/gpl.html
mailto:fftw@fftw.org

Chapter 12: Concept Index 73

12 Concept Index

6
64-bit architecture . 36

A
advanced interface . 1, 5, 16, 30
algorithm . 2
alignment . 15, 22, 25, 37
AltiVec . 15

B
basic interface . 1, 3, 23

C
C multi-dimensional arrays . 16
C++ . 5, 15, 17, 21, 22
c2r . 6, 25, 27
C99 . 17, 21, 22
Caml . 67, 69
Cell processor . 51, 64
code generator . 2, 67
codelet . 2, 63, 67, 69
column-major . 16, 53, 56
compiler . 2, 63, 65, 66
compiler flags . 63, 65
configuration routines . 40
configure . 47, 51, 63
cycle counter . 63, 66

D
DCT . 12, 30, 42
Devil . 3
DFT . 1, 4, 40
DHT . 13, 44
discrete cosine transform 12, 30, 42
discrete Fourier transform 1, 40
discrete Hartley transform 13, 30, 44
discrete sine transform 12, 30, 43
dist . 31, 33
DST . 12, 30, 43

E
Ecclesiastes . 19
execute . 1, 4, 37

F
FFTW . 1
fftw-wisdom utility . 19, 40

fftw-wisdom-to-conf utility . 40
flags 4, 6, 24, 27, 29, 34, 35, 36, 54
Fortran interface . 16, 53
Fortran-callable wrappers . 64
frequency . 4, 40

G
g77 . 65
guru interface . 1, 5, 32, 53

H
halfcomplex format . 7, 11, 41
hc2r . 11, 25
Hermitian . 6, 41
howmany loop . 33
howmany parameter . 31

I
IDCT . 12, 30, 42
in-place . 4, 6, 24, 27, 28, 29, 35
installation . 63
interleaved format . 32

K
kind (r2r) . 10, 29

L
linking on Unix . 47
LISP . 69

M
MIPS PS . 15
monadic programming . 67

N
new-array execution . 37
normalization . . 4, 10, 11, 12, 14, 24, 27, 29, 40, 41,

42, 44
number of threads . 48

O
out-of-place . 25, 28

74 FFTW 3.2.1

P
padding . 6, 7, 27, 28
parallel transform . 47
partial order . 5
plan . 1, 4
planner . 1
portability 15, 19, 21, 47, 53, 54, 56, 63, 64
precision . 5, 6, 15, 21, 64

R
r2c . 6, 11, 26, 45
r2c/c2r multi-dimensional array format . . 7, 28, 56
r2hc . 11
r2r . 10, 28, 41
rank . 5
real-even DFT . 12, 41
real-odd DFT . 12, 43
REDFT . 12, 41, 67
RODFT . 12, 43
row-major . 16, 24, 29, 33

S
saving plans to disk . 18, 38
shared-memory . 47
SIMD . 3, 15
split format . 32
SSE . 15
SSE2 . 15
stride . 16, 31, 33

T
thread safety . 48
threads . 47, 48, 64

V
vector . 31, 32

W
wisdom . 18, 38
wisdom, problems with . 19
wisdom, system-wide . 19, 39

Chapter 13: Library Index 75

76 FFTW 3.2.1

13 Library Index

D
dfftw_destroy_plan . 55
dfftw_execute . 54
dfftw_execute_dft . 54, 55
dfftw_execute_dft_r2c . 56
dfftw_export_wisdom . 57
dfftw_forget_wisdom . 57
dfftw_import_system_wisdom 57
dfftw_import_wisdom . 57
dfftw_init_threads . 55
dfftw_plan_dft_1d . 55
dfftw_plan_dft_3d . 56
dfftw_plan_dft_r2c_1d . 56
dfftw_plan_dft_r2c_2d . 56
dfftw_plan_with_nthreads 55

F
FFTW_BACKWARD . 4, 6
fftw_cleanup . 23
fftw_cleanup_threads . 48
fftw_complex . 4, 21
FFTW_DESTROY_INPUT . 25
fftw_destroy_plan . 4, 22
FFTW_DHT . 13, 30
FFTW_ESTIMATE . 4, 18, 25, 66
fftw_execute . 4, 22, 37
fftw_execute_dft . 38
fftw_execute_dft_c2r . 38
fftw_execute_dft_r2c . 38
fftw_execute_dft_r2r . 38
fftw_execute_split_dft . 38
fftw_execute_split_dft_c2r 38
fftw_execute_split_dft_r2c 38
FFTW_EXHAUSTIVE . 18, 25
fftw_export_wisdom . 38
fftw_export_wisdom_to_file 18, 38
fftw_export_wisdom_to_string 38
fftw_flops . 23
fftw_forget_wisdom . 19, 39
FFTW_FORWARD . 4, 6
fftw_fprint_plan . 23
fftw_free . 4, 15, 22
FFTW_HC2R . 11, 30
fftw_import_system_wisdom 19, 39
fftw_import_wisdom . 39
fftw_import_wisdom_from_file 18, 39
fftw_import_wisdom_from_string 39
fftw_init_threads . 48
fftw_iodim . 33, 53
fftw_iodim64 . 37
fftw_malloc . 3, 15, 17, 22
FFTW_MEASURE . 4, 18, 25
FFTW_NO_TIMELIMIT . 26
FFTW_PATIENT . 5, 18, 25, 48
fftw_plan . 4, 22
fftw_plan_dft . 5, 23
fftw_plan_dft_1d . 4, 23

fftw_plan_dft_2d . 5, 23
fftw_plan_dft_3d . 5, 23
fftw_plan_dft_c2r . 27
fftw_plan_dft_c2r_1d . 6, 27
fftw_plan_dft_c2r_2d . 27
fftw_plan_dft_c2r_3d . 27
fftw_plan_dft_r2c . 7, 26
fftw_plan_dft_r2c_1d . 6, 26
fftw_plan_dft_r2c_2d . 7, 26
fftw_plan_dft_r2c_3d . 7, 26
fftw_plan_guru_dft . 34
fftw_plan_guru_dft_c2r . 35
fftw_plan_guru_dft_r2c . 35
fftw_plan_guru_r2r . 36
fftw_plan_guru_split_dft 34
fftw_plan_guru_split_dft_c2r 35
fftw_plan_guru_split_dft_r2c 35
fftw_plan_guru64_dft . 36
fftw_plan_many_dft . 30
fftw_plan_many_dft_c2r . 31
fftw_plan_many_dft_r2c . 31
fftw_plan_many_r2r . 32
fftw_plan_r2r . 10, 28
fftw_plan_r2r_1d . 10, 28
fftw_plan_r2r_2d . 10, 28
fftw_plan_r2r_3d . 10, 28
fftw_plan_with_nthreads . 48
FFTW_PRESERVE_INPUT . 6, 25
fftw_print_plan . 23
FFTW_R2HC . 11, 30
fftw_r2r_kind . 10
FFTW_REDFT00 . 12, 29, 30
FFTW_REDFT01 . 12, 30
FFTW_REDFT10 . 12, 30
FFTW_REDFT11 . 12, 30
FFTW_RODFT00 . 12, 30
FFTW_RODFT01 . 12, 30
FFTW_RODFT10 . 12, 30
FFTW_RODFT11 . 12, 30
fftw_set_timelimit . 26
FFTW_UNALIGNED . 25, 37, 55
FFTW_WISDOM_ONLY . 25

P
ptrdiff_t . 36

R
R2HC . 41
REDFT00 . 41, 42
REDFT01 . 42
REDFT10 . 42
REDFT11 . 42
RODFT00 . 43
RODFT01 . 43
RODFT10 . 43
RODFT11 . 44

	Introduction
	Tutorial
	Complex One-Dimensional DFTs
	Complex Multi-Dimensional DFTs
	One-Dimensional DFTs of Real Data
	Multi-Dimensional DFTs of Real Data
	More DFTs of Real Data
	The Halfcomplex-format DFT
	Real even/odd DFTs (cosine/sine transforms)
	The Discrete Hartley Transform

	Other Important Topics
	Data Alignment
	SIMD alignment and fftw_malloc
	Stack alignment on x86

	Multi-dimensional Array Format
	Row-major Format
	Column-major Format
	Fixed-size Arrays in C
	Dynamic Arrays in C
	Dynamic Arrays in C---The Wrong Way

	Words of Wisdom---Saving Plans
	Caveats in Using Wisdom

	FFTW Reference
	Data Types and Files
	Complex numbers
	Precision
	Memory Allocation

	Using Plans
	Basic Interface
	Complex DFTs
	Planner Flags
	Real-data DFTs
	Real-data DFT Array Format
	Real-to-Real Transforms
	Real-to-Real Transform Kinds

	Advanced Interface
	Advanced Complex DFTs
	Advanced Real-data DFTs
	Advanced Real-to-real Transforms

	Guru Interface
	Interleaved and split arrays
	Guru vector and transform sizes
	Guru Complex DFTs
	Guru Real-data DFTs
	Guru Real-to-real Transforms
	64-bit Guru Interface

	New-array Execute Functions
	Wisdom
	Wisdom Export
	Wisdom Import
	Forgetting Wisdom
	Wisdom Utilities

	What FFTW Really Computes
	The 1d Discrete Fourier Transform (DFT)
	The 1d Real-data DFT
	1d Real-even DFTs (DCTs)
	1d Real-odd DFTs (DSTs)
	1d Discrete Hartley Transforms (DHTs)
	Multi-dimensional Transforms

	Multi-threaded FFTW
	Installation and Supported Hardware/Software
	Usage of Multi-threaded FFTW
	How Many Threads to Use?
	Thread safety

	FFTW on the Cell Processor
	Cell Installation
	Cell Caveats
	FFTW Accuracy on Cell

	Calling FFTW from Fortran
	Fortran-interface routines
	FFTW Constants in Fortran
	FFTW Execution in Fortran
	Fortran Examples
	Wisdom of Fortran?

	Upgrading from FFTW version 2
	Installation and Customization
	Installation on Unix
	Installation on non-Unix systems
	Cycle Counters
	Generating your own code

	Acknowledgments
	License and Copyright
	Concept Index
	Library Index

